130 research outputs found

    The New Anthelmintic Tribendimidine is an L-type (Levamisole and Pyrantel) Nicotinic Acetylcholine Receptor Agonist

    Get PDF
    Intestinal parasitic nematodes or roundworms infect over 1 billion people in tropical countries. Overall, they are a huge source of morbidity in infected people, including children and pregnant women, and are increasingly being recognized as key poverty-promoting parasites. Despite their importance, few drugs for dealing with them exist. Furthermore, none has optimal efficacy, all can be resisted by the parasites, and, for practical reasons, only one is used for single-dose Mass Drug Administrations (MDAs). There is a dire need for better roundworm drugs (anthelmintics). In the past 30 years, only one anthelmintic, tribendimidine, developed by the Chinese CDC, has entered human clinical trials. Tribendimidine has good single-dose efficacy against some roundworm parasites. However, how tribendimidine works was unknown. Here, using the roundworm Caenorhabditis elegans to evolve resistance to tribendimidine in the lab, followed by genetic and molecular testing and cross-resistance drug studies, we demonstrate that tribendimidine is unequivocally in the same drug family as two known anthelmintics, levamisole and pyrantel. These results have important implications for how tribendimidine might be used in MDAs where resistance to current drugs is known or suspected and for how tribendimidine might be combined with other drugs to maximize therapy while minimizing resistance threats

    Recombinant Paraprobiotics as a New Paradigm for Treating Gastrointestinal Nematode Parasites of Humans

    Get PDF
    Gastrointestinal nematodes (GINs) of humans, e.g., hookworms, negatively impact childhood growth, cognition, nutrition, educational attainment, income, productivity, and pregnancy. Hundreds of millions of people are targeted with mass drug administration (MDA) of donated benzimidazole anthelmintics. However, benzimidazole efficacy against GINs is suboptimal, and reduced/low efficacy has been seen. Developing an anthelmintic for human MDA is daunting: it must be safe, effective, inexpensive, stable without a cold chain, and massively scalable. Bacillus thuringiensis crystal protein 5B (Cry5B) has anthelmintic properties that could fill this void. Here, we developed an active pharmaceutical ingredient (API) containing B. thuringiensis Cry5B compatible with MDA. We expressed Cry5B in asporogenous B. thuringiensis during vegetative phase, forming cytosolic crystals. These bacteria with cytosolic crystals (BaCC) were rendered inviable (inactivated BaCC [IBaCC]) with food-grade essential oils. IBaCC potency was validated in vitro against nematodes. IBaCC was also potent in vivo against human hookworm infections in hamsters. IBaCC production was successfully scaled to 350 liters at a contract manufacturing facility. A simple fit-for-purpose formulation to protect against stomach digestion and powdered IBaCC were successfully made and used against GINs in hamsters and mice. A pilot histopathology study and blood chemistry workup showed that five daily consecutive doses of 200 mg/kg body weight Cry5B IBaCC (the curative single dose is 40 mg/kg) was nontoxic to hamsters and completely safe. IBaCC is a safe, inexpensive, highly effective, easy-to-manufacture, and scalable anthelmintic that is practical for MDA and represents a new paradigm for treating human GINs

    Drug Screening for Discovery of Broad-spectrum Agents for Soil-transmitted Nematodes

    Get PDF
    Soil-transmitted nematodes (STNs), namely hookworms, whipworms, and ascarids, are extremely common parasites, infecting 1-2 billion of the poorest people worldwide. Two benzimidazoles, albendazole and mebendazole, are currently used in STN mass drug administration, with many instances of low/reduced activity reported. New drugs against STNs are urgently needed. We tested various models for STN drug screening with the aim of identifying the most effective tactics for the discovery of potent, safe and broad-spectrum agents. We screened a 1280-compound library of approved drugs to completion against late larval/adult stages and egg/larval stages of both the human hookworm parasite Ancylostoma ceylanicum and the free-living nematode Caenorhabditis elegans, which is often used as a surrogate for STNs in screens. The quality of positives was further evaluated based on cheminformatics/data mining analyses and activity against evolutionarily distant Trichuris muris whipworm adults. From these data, two pairs of positives, sulconazole/econazole and pararosaniline/cetylpyridinium, predicted to target nematode CYP-450 and HSP-90 respectively, were prioritized for in vivo evaluation against A. ceylanicum infections in hamsters. One of these positives, pararosaniline, showed a significant impact on hookworm fecundity in vivo. Taken together, our results suggest that anthelmintic screening with A. ceylanicum larval stages is superior to C. elegans based on both reduced false negative rate and superior overall quality of actives. Our results also highlight two potentially important targets for the discovery of broad-spectrum human STN drugs

    HLH-30/TFEB-mediated autophagy functions in a cell-autonomous manner for epithelium intrinsic cellular defense against bacterial pore-forming toxin in C. elegans

    Get PDF
    Autophagy is an evolutionarily conserved intracellular system that maintains cellular homeostasis by degrading and recycling damaged cellular components. The transcription factor HLH-30/TFEB-mediated autophagy has been reported to regulate tolerance to bacterial infection, but less is known about the bona fide bacterial effector that activates HLH-30 and autophagy. Here, we reveal that bacterial membrane pore-forming toxin (PFT) induces autophagy in an HLH-30-dependent manner in Caenorhabditis elegans. Moreover, autophagy controls the susceptibility of animals to PFT toxicity through xenophagic degradation of PFT and repair of membrane-pore cell-autonomously in the PFT-targeted intestinal cells in C. elegans. These results demonstrate that autophagic pathways and autophagy are induced partly at the transcriptional level through HLH-30 activation and are required to protect metazoan upon PFT intoxication. Together, our data show a new and powerful connection between HLH-30-mediated autophagy and epithelium intrinsic cellular defense against the single most common mode of bacterial attack in vivo

    Anthelminthic Screening for Parasitic Nematodes

    Get PDF
    For many parasitic diseases, high-throughput phenotypic screening is an important tool in finding new drugs. Some of the most important parasitic diseases are caused by nematodes. However, these parasitic nematodes are not typically amenable to high throughput screening. Due to the ease of its maintenance and suitability for high throughput assay, the nematode Caenorhabditis elegans is instead used. To address whether C. elegans is a good model for nematode drug discovery, we compared the drug susceptibility of C. elegans relative to the human hookworm nematode parasite Ancylostoma ceylanicum at several developmental stages using a library of FDA approved drugs. I will present results of these studies that point to how well C. elegans efficacy correlates with hookworm efficacy and how early larval stages (easier to get) correlated with adult stages (more representative of what stage is targeted in human therapy). In addition, we are working on moderate-high throughput system for screening adult parasites. Murine Holigmosomoides polygyrus is a good model for human parasitic nematodes. Using Union Biometrica, Copas, worm sorter we were able to sort H. polygyrus into 384 well format. Here I will discuss the capabilities of this system as well as how we are building de novo, in collaboration with the Albrecht laboratory at WPI, an imaging and image analysis platform for screening adult stages of this parasite against large drug libraries

    The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE-family alpha pore-forming toxins

    Get PDF
    BACKGROUND: The Cry6 family of proteins from Bacillus thuringiensis represents a group of powerful toxins with great potential for use in the control of coleopteran insects and of nematode parasites of importance to agriculture. These proteins are unrelated to other insecticidal toxins at the level of their primary sequences and the structure and function of these proteins has been poorly studied to date. This has inhibited our understanding of these toxins and their mode of action, along with our ability to manipulate the proteins to alter their activity to our advantage. To increase our understanding of their mode of action and to facilitate further development of these proteins we have determined the structure of Cry6Aa in protoxin and trypsin-activated forms and demonstrated a pore-forming mechanism of action. RESULTS: The two forms of the toxin were resolved to 2.7 A and 2.0 A respectively and showed very similar structures. Cry6Aa shows structural homology to a known class of pore-forming toxins including hemolysin E from Escherichia coli and two Bacillus cereus proteins: the hemolytic toxin HblB and the NheA component of the non-hemolytic toxin (pfam05791). Cry6Aa also shows atypical features compared to other members of this family, including internal repeat sequences and small loop regions within major alpha helices. Trypsin processing was found to result in the loss of some internal sequences while the C-terminal region remains disulfide-linked to the main core of the toxin. Based on the structural similarity of Cry6Aa to other toxins, the mechanism of action of the toxin was probed and its ability to form pores in vivo in Caenorhabditis elegans was demonstrated. A non-toxic mutant was also produced, consistent with the proposed pore-forming mode of action. CONCLUSIONS: Cry6 proteins are members of the alpha helical pore-forming toxins - a structural class not previously recognized among the Cry toxins of B. thuringiensis and representing a new paradigm for nematocidal and insecticidal proteins. Elucidation of both the structure and the pore-forming mechanism of action of Cry6Aa now opens the way to more detailed analysis of toxin specificity and the development of new toxin variants with novel activities

    Involvement of fatty acid pathways and cortical interaction of the pronuclear complex in Caenorhabditis elegans embryonic polarity.

    Get PDF
    BACKGROUND: Cell polarity is essential for many decisions made during development. While investigation of polarity-specific factors has yielded great insights into the polarization process, little is known on how these polarity-specific factors link to the basic cellular mechanisms that function in non-polarity aspects of the cell. To better understand the mechanisms that establish embryonic polarity, we investigated genes required for polarity in the one-cell C. elegans embryo that are also required for other non-polarity functions. This has led to the identification of the Pod-class of mutants that are characterized by osmosensitive embryos and defects in anterior-posterior polarity. RESULTS: Mutation in either of two loci of this class, emb-8 and pod-2, disrupts embryonic polarization and results in osmotically-sensitive embryos. Loss of emb-8, a previously uncharacterized polarity gene, causes mislocalization of PAR-3 and PAR-2 that molecularly mark the anterior and posterior cortices. emb-8 encodes NADPH-cytochrome P450 reductase, a protein supplying electrons to cytochrome P450-family enzymes, some of which catalyze fatty acid modifications. Cloning of the previously characterized polarity gene pod-2 reveals it encodes acetyl-CoA carboxylase, an enzyme that catalyzes the first step in de novo fatty acid synthesis. Depletion of fatty acid synthase, the next enzyme in the biosynthetic pathway, by RNA-interference (RNAi) also causes similar loss of one-cell polarity. Furthermore, pod-2 polarity defects can be rescued by addition of exogenous fatty acids. By following the behavior of the pronucleus in emb-8 and pod-2 mutant embryos, we demonstrate that loss of polarity correlates with impaired interaction between the pronucleus-centrosome complex and the posterior cortex. CONCLUSIONS: The characterization of emb-8 and pod-2 mutant embryos suggests that the pronucleus-centrosome complex interaction with the cortex plays a direct role in establishing polarity and that fatty acid pathways are important for this polarizing event.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Crystal protein Cry5B as a novel and powerful anthelmintic

    Get PDF
    Soil-transmitted helminths (STHs), most notably, hookworms, whipworms, and Ascaris, are nematodes that infect more than 1.5 billion of the poorest people and are amongst the leading causes of morbidity worldwide. Only two classes of de-worming drugs (anthelmintics) are available for treatment, and only one is commonly used in mass drug administrations. New anthelmintics are urgently needed to overcome emerging resistance and to produce higher cure rates. Crystal (Cry) proteins, in particular Cry5B, made by Bacillus thuringiensis (Bt) are promising new candidates. Cry5B has excellent anthelmintic properties against many free-living and parasitic nematodes, including in vivo efficacy against multiple STH infections in rodents (Heligomasmidoes polygyrus and Ancylostoma ceylanicum) and in pigs (Ascaris suum). An enormous challenge for STHs, very different from most diseases worked on in the developing world, is the requirement that therapies be very cheap (the people infected are very poor and current drugs costs pennies a dose), massively scalable (over 4 billion people are at risk from infection), and have a long shelf life in harsh environments, that have high temperature and humidity and no cold chain. We will update our progress in several key areas. We will present new data on the in vivo activity of Cry5B against a major human parasite in humans. We will also present data on the whether or not the immune system is required for Cry5B action in vivo. We will also present on our development efforts to produce a deployable version of Cry5B that is cheap, safe, scalable, and stable. These efforts are currently focused on bacterial engineering, expression, and formulation

    Terpenes as ‘resistance-busting” anthelmintic drug

    Get PDF
    There is an urgent need for new therapies for parasitic helminthic diseases affecting 1.5-2 billion people worldwide due to the threat of wide-spread resistance development to existing treatments and due to problems of incomplete efficacies. Terpenes are plant secondary metabolites and major essential oil constituents. Historically, the terpene thymol was successfully used to cure hookworm infections in the 1900’s. Although effective, large doses were needed and thymol treatment had significant side effects. Because free terpenes are absorbed in the stomach, less than 10% of oral terpenes entered the site where the parasites live. To overcome these problems we have developed microparticle encapsulated terpenes and enteric coated terpene capsules. We screened 20 terpenes for anthelmintic activity in vitro against adult stages of the hookworm and whipworm parasitic nematodes Ancylostoma ceylanicum and Trichuris muris. Here we will present results of this work, which shows the promising potential for some terpenes as pan-nematode anthelmintics. This work has allowed us to classify terpenes into at least two groups based on their in vitro killing kinetics. We have also shown that some terpenes are effective against an albendazole-resistant Caenorhabditis elegans strain suggesting that terpenes may play an important role in overcoming helminthic drug resistance. We will also present our work on optimizing lead terpene formulations in vitro and in vivo in animal models of parasitic nematode infection in order to overcome the challenges and realize the potential of “resistance-busting” terpene-based anthelmintic therapies

    In vivo and in vitro studies of Cry5B and nicotinic acetylcholine receptor agonist anthelmintics reveal a powerful and unique combination therapy against intestinal nematode parasites

    Get PDF
    BACKGROUND: The soil-transmitted nematodes (STNs) or helminths (hookworms, whipworms, large roundworms) infect the intestines of ~1.5 billion of the poorest peoples and are leading causes of morbidity worldwide. Only one class of anthelmintic or anti-nematode drugs, the benzimidazoles, is currently used in mass drug administrations, which is a dangerous situation. New anti-nematode drugs are urgently needed. Bacillus thuringiensis crystal protein Cry5B is a powerful, promising new candidate. Drug combinations, when properly made, are ideal for treating infectious diseases. Although there are some clinical trials using drug combinations against STNs, little quantitative and systemic work has been performed to define the characteristics of these combinations in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Working with the hookworm Ancylostoma ceylanicum-hamster infection system, we establish a laboratory paradigm for studying anti-nematode combinations in vivo using Cry5B and the nicotinic acetylcholine receptor (nAChR) agonists tribendimidine and pyrantel pamoate. We demonstrate that Cry5B strongly synergizes in vivo with both tribendimidine and pyrantel at specific dose ratios against hookworm infections. For example, whereas 1 mg/kg Cry5B and 1 mg/kg tribendimidine individually resulted in only a 0%-6% reduction in hookworm burdens, the combination of the two resulted in a 41% reduction (P = 0.020). Furthermore, when mixed at synergistic ratios, these combinations eradicate hookworm infections at doses where the individual doses do not. Using cyathostomin nematode parasites of horses, we find based on inhibitory concentration 50% values that a strongylid parasite population doubly resistant to nAChR agonists and benzimidazoles is more susceptible or hypersusceptible to Cry5B than a cyathostomin population not resistant to nAChR agonists, consistent with previous Caenhorhabditis elegans results. CONCLUSIONS/SIGNIFICANCE: Our study provides a powerful means by which anthelmintic combination therapies can be examined in vivo in the laboratory. In addition, we demonstrate that Cry5B and nAChR agonists have excellent combinatorial properties-Cry5B combined with nAChR agonists gives rise to potent cures that are predicted to be recalcitrant to the development of parasite resistance. These drug combinations highlight bright spots in new anthelmintic development for human and veterinary animal intestinal nematode infections
    corecore