3 research outputs found

    Requirement of Pax6 for the integration of guidance cues in cell migration

    Get PDF
    The intricate patterns of cell migration that are found throughout development are generated through a vast array of guidance cues. Responding integratively to distinct, often conflicting, migratory signals is probably crucial for cells to reach their correct destination. Pax6 is a master transcription factor with key roles in neural development that include the control of cell migration. In this study, we have investigated the ability of cells derived from cortical neurospheres from wildtype (WT) and Pax6-/- mouse embryos to integrate diverging guidance cues. We used two different cues, either separately or in combination: substratum nanogrooves to induce contact guidance, and electric fields (EFs) to induce electrotaxis. In the absence of an EF, both WT and Pax6-/- cells aligned and migrated parallel to grooves, and on a flat substrate both showed marked electrotaxis towards the cathode. When an EF was applied in a perpendicular orientation to grooves, WT cells responded significantly to both cues, migrating in highly oblique trajectories in the general direction of the cathode. However, Pax6-/- cells had an impaired response to both cues simultaneously. Our results demonstrate that these neurosphere derived cells have the capacity to integrate diverging guidance cues, which requires Pax6 function

    Using a variant of coverslip hypoxia to visualize tumor cell alterations at increasing distances from an oxygen source

    Get PDF
    Early stages in tumor development involve growth in confined spaces, where oxygen diffusion is limited and metabolic waste products accumulate. This hostile microenvironment imposes strong selective pressures on tumor cells, leading eventually to the survival and expansion of aggressive subclones that condition further tumor evolution. To model features of this microenvironment in vitro, a diffusional barrier can be introduced in the form of a coverslip placed on top of cells, a method termed coverslip hypoxia. Using a variant of this method, with larger volume between coverslip and cells and with oxygen diffusion occurring only through a small hole in the center of the coverslip, we have visualized alterations in LNCaP tumor cells as a function of their distance to the oxygen source at the center. We observed remarkable morphological changes in LNCaP cells as the distance from the center increases, with cells becoming highly spread, displaying dynamic membrane protrusions and occasionally adopting a migratory phenotype. Concomitantly, cells farther from the center displayed marked increases in the hypoxia marker hypoxyprobe, whereas extracellular pH decreased in the same direction. Cells with altered morphology displayed prominent increases in fibrillar actin, as well as swollen mitochondria with distorted cristae and accumulation of neutral lipid‐containing intracellular vesicles. These results show that an in vitro microenvironment that models diffusional barriers encountered by tumors in situ can have profound effects on tumor cells. The coverslip hypoxia variant we describe can be used to characterize in vitro the response of tumor cells to environmental conditions that play crucial roles in early tumor development

    Contributions of viral oncogenes of HPV‑18 and hypoxia to oxidative stress and genetic damage in human keratinocytes

    Get PDF
    Infection with high-risk human papillomaviruses like HPV-16 and HPV-18 is highly associated with the evelopment of cervical and other cancers. Malignant transformation requires viral oncoproteins E5, E6 and E7, which promote cell proliferation and increase DNA damage. Oxidative stress and hypoxia are also key factors in cervical malignant transformation. Increased levels of reactive species of oxygen (ROS) and nitrogen (RNS) are found in the hypoxic tumor microenvironment, promoting genetic instability and invasiveness. In this work, we studied the combined effect of E5, E6 and E7 and hypoxia in increasing oxidative stress and promoting DNA damage and nuclear architecture alterations. HaCaT cells containing HPV-18 viral oncogenes (HaCaT E5/E6/E7-18) showed higher ROS levels in normoxia and higher levels of RNS in hypoxia compared to HaCaT parental cells, as well as higher genetic damage in hypoxia as measured by γH2AX and comet assays. In hypoxia, HaCaT E5/E6/E7-18 increased its nuclear dry mass and both cell types displayed marked heterogeneity in nuclear dry mass distribution and increased nuclear foci. Our results show contributions of both viral oncogenes and hypoxia to oxidative stress, DNA damage and altered nuclear architecture, exemplifying how an altered microenvironment combines with oncogenic transformation to promote tumor progression.PEDECIBA. ANII
    corecore