9 research outputs found

    Differential attraction and repulsion of Staphylococcus aureus and Pseudomonas aeruginosa on molecularly smooth titanium films

    Get PDF
    Magnetron sputtering techniques were used to prepare molecularly smooth titanium thin films possessing an average roughness between 0.18 nm and 0.52 nm over 5 μm × 5 μm AFM scanning areas. Films with an average roughness of 0.52 nm or lower were found to restrict the extent of P. aeruginosa cell attachment, with less than 0.5% of all available cells being retained on the surface. The attachment of S. aureus cells was also limited on films with an average surface roughness of 0.52 nm, however they exhibited a remarkable propensity for attachment on the nano-smoother 0.18 nm average surface roughness films, with the attachment density being almost twice as great as that observed on the nano-rougher film. The difference in attachment behaviour can be attributed to the difference in morphology of the rod-shaped P. aeruginosa compared to the spherical S. aureus cells

    Emerging research and priorities for elasmobranch conservation.

    Get PDF
    Over the past 4 decades there has been a growing concern for the conservation status of elasmobranchs (sharks and rays). In 2002, the first elasmobranch species were added to Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Less than 20 yr later, there were 39 species on Appendix II and 5 on Appendix I. Despite growing concern, effective conservation and management remain challenged by a lack of data on population status for many species, human−wildlife interactions, threats to population viability, and the efficacy of conservation approaches. We surveyed 100 of the most frequently published and cited experts on elasmobranchs and, based on ranked responses, prioritized 20 research questions on elasmobranch conservation. To address these questions, we then convened a group of 47 experts from 35 institutions and 12 countries. The 20 questions were organized into the following broad categories: (1) status and threats, (2) population and ecology, and (3) conservation and management. For each section, we sought to synthesize existing knowledge, describe consensus or diverging views, identify gaps, and suggest promising future directions and research priorities. The resulting synthesis aggregates an array of perspectives on emergent research and priority directions for elasmobranch conservation

    Abiotic and Biotic Stresses Interaction in Fabaceae Plants. Contributions from the Grain Legumes/Soilborne Vascular Diseases/Drought Stress Triangle

    No full text
    Editors: Mirza Hasanuzzaman, Susana Araújo, Sarvajeet Singh Gill.As sessile organisms, plants are constantly exposed to simultaneously abiotic and biotic stresses that impact growth thus resulting in significant yield losses. An example is drought and root infecting pathogens, which combined cause greater damage to plants than the stresses individually. Substantial information is available on the physiological, molecular, and metabolic changes in Fabaceae plants exposed to individual stresses, but little is known about how plants respond to multiple stresses. This is of primary importance for the development of breeding approaches based on the trade-off between plant defense response mechanisms, and high and consistent yield under field conditions. A better knowledge of the mechanisms by which legume plants perceive and transduce simultaneous or sequential combination of stress signals to initiate diverse adaptive responses is essential for breeding multiple stress-tolerant crop cultivars. In this chapter, we assess the relevance of understanding legume combined responses to abiotic and biotic stresses for production and breeding, focusing on soilborne vascular diseases and drought interaction in grain legumes. Particular attention is given to the crosstalk between signaling pathways of the “stress triangle” pathogen/host/environment interactions and to the application of integrated breeding methods aiming at multiple stress-resistant legume crops better adapted to climate change.Financial support by Fundação para a Ciência e Tecnologia (FCT), Portugal, is acknowledged through grant SFRH/BD/92160/2013 (STL), DL57 PhD holder contract (SA), IF/01337/2014 FCT Investigator contract (MCVP), research project BeGeQA (PTDC/AGR-TEC/3555/2012) and research unit GREEN-IT “Bioresources for Sustainability” (UID/Multi/04551/2019)

    Degenerative lumbar spinal stenosis and lumbar spine configuration

    No full text
    As life expectancy increases, degenerative lumbar spinal stenosis (DLSS) becomes a common health problem among the elderly. DLSS is usually caused by degenerative changes in bony and/or soft tissue elements. The poor correlation between radiological manifestations and the clinical picture emphasizes the fact that more studies are required to determine the natural course of this syndrome. Our aim was to reveal the association between lower lumbar spine configuration and DLSS. Two groups were studied: the first included 67 individuals with DLSS (mean age 66 ± 10) and the second 100 individuals (mean age 63.4 ± 13) without DLSS-related symptoms. Both groups underwent CT images (Philips Brilliance 64) and the following measurements were performed: a cross-section area of the dural sac, vertebral body dimensions (height, length and width), AP diameter of the bony spinal canal, lumbar lordosis and sacral slope angles. All measurements were taken at L3 to S1. Vertebral body lengths were significantly greater in the DLSS group at all levels compared to the control, whereas anterior vertebral body heights (L3, L4, L5) and middle vertebral heights (L3, L5) were significantly smaller in the LSS group. Lumbar lordosis, sacral slope and bony spinal canal were significantly smaller in the DLSS compared to the control. We conclude that the size and shape of vertebral bodies and canals significantly differed between the study groups. A tentative model is suggested to explain the association between these characteristics and the development of degenerative spinal stenosis

    Literatur

    No full text

    Warning SINEs: Alu elements, evolution of the human brain, and the spectrum of neurological disease

    No full text
    corecore