5 research outputs found

    Species-speciWc defense strategies of vegetative versus reproductive blades of the PaciWc kelps Lessonia nigrescens and Macrocystis integrifolia

    Get PDF
    Chemical defense is assumed to be costly and therefore algae should allocate defense investments in a way to reduce costs and optimize their overall fitness. Thus, lifetime expectation of particular tissues and their contribution to the fitness of the alga may affect defense allocation. Two brown algae common to the SE Pacific coasts, Lessonia nigrescens Bory and Macrocystis integrifolia Bory, feature important ontogenetic differences in the development of reproductive structures; in L. nigrescens blade tissues pass from a vegetative stage to a reproductive stage, while in M. integrifolia reproductive and vegetative functions are spatially separated on different blades. We hypothesized that vegetative blades of L. nigrescens with important future functions are more (or equally) defended than reproductive blades, whereas in M. integrifolia defense should be mainly allocated to reproductive blades (sporophylls), which are considered to make a higher contribution to fitness. Herein, within-plant variation in susceptibility of reproductive and vegetative tissues to herbivory and in allocation of phlorotannins (phenolics) and N-compounds was compared. The results show that phlorotannin and N-concentrations were higher in reproductive blade tissues for both investigated algae. However, preferences by amphipod grazers (Parhyalella penai) for either tissue type differed between the two algal species. Fresh reproductive tissue of L. nigrescens was more consumed than vegetative tissue, while the reverse was found in M. integrifolia, thus confirming the original hypothesis. This suggests that future fitness function might indeed be a useful predictor of anti-herbivore defense in large, perennial kelps. Results from feeding assays with artificial pellets that were made with air-dried material and extract-treated Ulva powder indicated that defenses in live algae are probably not based on chemicals that can be extracted or remain intact after air-drying and grinding up algal tissues. Instead, anti-herbivore defense against amphipod mesograzers seems to depend on structural traits of living algae

    Production of Manoalide and Its Analogues by the Sponge Luffariella variabilis Is Hardwired

    No full text
    The Great Barrier Reef sponge Luffariella variabilis (PolĂ©jaeff 1884) produces a range of potent anti-inflammatory compounds as its major metabolites. These major metabolites—manoalide monoacetate, manoalide, luffariellin A and seco-manoalide—were monitored temporally and spatially to quantify the potential yield from wild harvest or aquaculture. Production of the major metabolites was hardwired at the population level with little variation in space and time over meters to tens of kilometers in the Palm Islands, Queensland, Australia. Manoalide monoacetate (35 to 70 mg g−1 dry weight of sponge) was consistently the most abundant compound followed by manoalide (15 to 20 mg g−1 dry weight). Luffariellin A and seco-manoalide were 10 to 70 times less abundant and varied between 0 and 3 mg g−1 dry weight. On a larger spatial scale, L. variabilis from Davies Reef and Magnetic Island contained the same rank order and yields of compounds as the Palm Islands, indicating a generality of pattern over at least 100 km. The “hardwiring” of metabolite production at the population level by L. variabilis was also reflected in the lack of any inductive effect on metabolite production. In addition, individually monitored sponges produced fixed ratios of the major metabolites over time (years). However, these ratios varied between individuals, with some individuals consistently producing high levels of manoalide and manoalide monoacetate, providing the potential for selection of high-yielding stocks
    corecore