23,463 research outputs found

    Angular intricacies in hot gauge field theories

    Full text link
    It is argued that in hot gauge field theories, "Hard Thermal Loops" leading order calculations call for a definite sequence of angular averages and discontinuity (or Imaginary part prescription) operations, and run otherwise into incorrect results. The ten years old collinear singularity problem of hot QCDQCD, provides a striking illustration of that fate.Comment: 14 pages, 1 figur

    The Transition State in a Noisy Environment

    Get PDF
    Transition State Theory overestimates reaction rates in solution because conventional dividing surfaces between reagents and products are crossed many times by the same reactive trajectory. We describe a recipe for constructing a time-dependent dividing surface free of such recrossings in the presence of noise. The no-recrossing limit of Transition State Theory thus becomes generally available for the description of reactions in a fluctuating environment

    Uranium(III) coordination chemistry and oxidation in a flexible small-cavity macrocycle

    Get PDF
    U(III) complexes of the conformationally flexible, small-cavity macrocycle trans-calix[2]benzene[2]pyrrolide (L)2–, [U(L)X] (X = O-2,6-tBu2C6H3, N(SiMe3)2), have been synthesized from [U(L)BH4] and structurally characterized. These complexes show binding of the U(III) center in the bis(arene) pocket of the macrocycle, which flexes to accommodate the increase in the steric bulk of X, resulting in long U–X bonds to the ancillary ligands. Oxidation to the cationic U(IV) complex [U(L)X][B(C6F5)4] (X = BH4) results in ligand rearrangement to bind the smaller, harder cation in the bis(pyrrolide) pocket, in a conformation that has not been previously observed for (L)2–, with X located between the two ligand arene rings

    Spin transport in the XXZ model at high temperatures: Classical dynamics versus quantum S=1/2 autocorrelations

    Full text link
    The transport of magnetization is analyzed for the classical Heisenberg chain at and especially above the isotropic point. To this end, the Hamiltonian equations of motion are solved numerically for initial states realizing harmonic-like magnetization profiles of small amplitude and with random phases. Above the isotropic point, the resulting dynamics is observed to be diffusive in a hydrodynamic regime starting at comparatively small times and wave lengths. In particular, hydrodynamic regime and diffusion constant are both found to be in quantitative agreement with close-to-equilibrium results from quantum S=1/2 autocorrelations at high temperatures. At the isotropic point, the resulting dynamics turns out to be non-diffusive at the considered times and wave lengths.Comment: 6 pages, 5 figures, accepted for publication in Europhys. Let

    Reheating induced by competing decay modes

    Full text link
    We address the problem of studying the decay of the inflaton field ϕ\phi to another scalar field χ\chi through parametric resonance in the case of a coupling that involves several decay modes. This amounts to the presence of extra harmonic terms in the perturbation of the χ\chi field dynamics. For the case of two frequencies we compute the geometry of the resonance regions, which is significantly altered due to the presence of non-cuspidal resonance regions associated to higher harmonics and to the emergence of instability `pockets'. We discuss the effect of this change in the efficiency of the energy transfer process for the simplest case of a coupling given by a combination of the two interaction terms of homogeneous degree usually considered in the literature. We find that the presence of higher harmonics has limited cosmological implications.Comment: 14 pages, 4 figures Added references. Corrected typo
    • …
    corecore