284 research outputs found
Three Dimensional N=2 Supersymmetry on the Lattice
We show how 3-dimensional, N=2 supersymmetric theories, including super QCD
with matter fields, can be put on the lattice with existing techniques, in a
way which will recover supersymmetry in the small lattice spacing limit.
Residual supersymmetry breaking effects are suppressed in the small lattice
spacing limit by at least one power of the lattice spacing a.Comment: 21 pages, 2 figures, typo corrected, reference adde
Necessary and sufficient conditions for non-perturbative equivalences of large N orbifold gauge theories
Large N coherent state methods are used to study the relation between U(N)
gauge theories containing adjoint representation matter fields and their
orbifold projections. The classical dynamical systems which reproduce the large
N limits of the quantum dynamics in parent and daughter orbifold theories are
compared. We demonstrate that the large N dynamics of the parent theory,
restricted to the subspace invariant under the orbifold projection symmetry,
and the large N dynamics of the daughter theory, restricted to the untwisted
sector invariant under "theory space'' permutations, coincide. This implies
equality, in the large N limit, between appropriately identified connected
correlation functions in parent and daughter theories, provided the orbifold
projection symmetry is not spontaneously broken in the parent theory and the
theory space permutation symmetry is not spontaneously broken in the daughter.
The necessity of these symmetry realization conditions for the validity of the
large N equivalence is unsurprising, but demonstrating the sufficiency of these
conditions is new. This work extends an earlier proof of non-perturbative large
N equivalence which was only valid in the phase of the (lattice regularized)
theories continuously connected to large mass and strong coupling.Comment: 21 page, JHEP styl
Diffusion Enhances Spontaneous Electroweak Baryogenesis
We include the effects of diffusion in the electroweak spontaneous
baryogenesis scenario and show that it can greatly enhance the resultant baryon
density, by as much as a factor of over previous
estimates. Furthermore, the baryon density produced is rather insensitive to
parameters characterizing the first order weak phase transition, such as the
width and propagation velocity of the phase boundary.Comment: 15 pages, uses harvmac and epsf macro
The large-N(c) nuclear potential puzzle
An analysis of the baryon-baryon potential from the point of view of
large-N(c) QCD is performed. A comparison is made between the N(c)-scaling
behavior directly obtained from an analysis at the quark-gluon level to the
N(c)-scaling of the potential for a generic hadronic field theory in which it
arises via meson exchanges and for which the parameters of the theory are given
by their canonical large-N(c) scaling behavior. The purpose of this comparison
is to use large-N(c) consistency to test the widespread view that the
interaction between nuclei arises from QCD through the exchange of mesons.
Although at the one- and two-meson exchange level the scaling rules for the
potential derived from the hadronic theory matches the quark-gluon level
prediction, at the three- and higher-meson exchange level a generic hadronic
theory yields a potential which scales with N(c) faster than that of the
quark-gluon theory.Comment: 17 pages, LaTeX, 5 figure
Debye Screening and Baryogenesis during the Electroweak Phase Transition
We examine a recent claim that Debye screening will affect the charge
transport mechanism of anomalous electroweak baryogenesis. We show that the
effects of gauge charge screening do not affect the baryon number produced
during a first order electroweak phase transition. (Requires harvmac.tex)Comment: 12 pages, UCSD-PTH-92-19, BU-HEP-92-2
OBDD-Based Representation of Interval Graphs
A graph can be described by the characteristic function of the
edge set which maps a pair of binary encoded nodes to 1 iff the nodes
are adjacent. Using \emph{Ordered Binary Decision Diagrams} (OBDDs) to store
can lead to a (hopefully) compact representation. Given the OBDD as an
input, symbolic/implicit OBDD-based graph algorithms can solve optimization
problems by mainly using functional operations, e.g. quantification or binary
synthesis. While the OBDD representation size can not be small in general, it
can be provable small for special graph classes and then also lead to fast
algorithms. In this paper, we show that the OBDD size of unit interval graphs
is and the OBDD size of interval graphs is $O(\
| V \ | \log \ | V \ |)\Omega(\ | V \ | \log
\ | V \ |)O(\log \ | V \ |)O(\log^2 \ | V \ |)$ operations and
evaluate the algorithms empirically.Comment: 29 pages, accepted for 39th International Workshop on Graph-Theoretic
Concepts 201
Modified iterative versus Laplacian Landau gauge in compact U(1) theory
Compact U(1) theory in 4 dimensions is used to compare the modified iterative
and the Laplacian fixing to lattice Landau gauge in a controlled setting, since
in the Coulomb phase the lattice theory must reproduce the perturbative
prediction. It turns out that on either side of the phase transition clear
differences show up and in the Coulomb phase the ability to remove double Dirac
sheets proves vital on a small lattice.Comment: 14 pages, 8 figures containing 23 graphs, v2: 2 figures removed, 2
references adde
An integral method for solving nonlinear eigenvalue problems
We propose a numerical method for computing all eigenvalues (and the
corresponding eigenvectors) of a nonlinear holomorphic eigenvalue problem that
lie within a given contour in the complex plane. The method uses complex
integrals of the resolvent operator, applied to at least column vectors,
where is the number of eigenvalues inside the contour. The theorem of
Keldysh is employed to show that the original nonlinear eigenvalue problem
reduces to a linear eigenvalue problem of dimension .
No initial approximations of eigenvalues and eigenvectors are needed. The
method is particularly suitable for moderately large eigenvalue problems where
is much smaller than the matrix dimension. We also give an extension of the
method to the case where is larger than the matrix dimension. The
quadrature errors caused by the trapezoid sum are discussed for the case of
analytic closed contours. Using well known techniques it is shown that the
error decays exponentially with an exponent given by the product of the number
of quadrature points and the minimal distance of the eigenvalues to the
contour
Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective
Transport properties of a thermal medium determine how its conserved charge
densities (for instance the electric charge, energy or momentum) evolve as a
function of time and eventually relax back to their equilibrium values. Here
the transport properties of the quark-gluon plasma are reviewed from a
theoretical perspective. The latter play a key role in the description of
heavy-ion collisions, and are an important ingredient in constraining particle
production processes in the early universe. We place particular emphasis on
lattice QCD calculations of conserved current correlators. These Euclidean
correlators are related by an integral transform to spectral functions, whose
small-frequency form determines the transport properties via Kubo formulae. The
universal hydrodynamic predictions for the small-frequency pole structure of
spectral functions are summarized. The viability of a quasiparticle description
implies the presence of additional characteristic features in the spectral
functions. These features are in stark contrast with the functional form that
is found in strongly coupled plasmas via the gauge/gravity duality. A central
goal is therefore to determine which of these dynamical regimes the quark-gluon
plasma is qualitatively closer to as a function of temperature. We review the
analysis of lattice correlators in relation to transport properties, and
tentatively estimate what computational effort is required to make decisive
progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag.
added end of section 3.4, and one at the end of section 3.2.2; some Refs.
added, and some other minor change
Dark Matter, Light Stops and Electroweak Baryogenesis
We examine the neutralino relic density in the presence of a light top
squark, such as the one required for the realization of the electroweak
baryogenesis mechanism, within the minimal supersymmetric standard model. We
show that there are three clearly distinguishable regions of parameter space,
where the relic density is consistent with WMAP and other cosmological data.
These regions are characterized by annihilation cross sections mediated by
either light Higgs bosons, Z bosons, or by the co-annihilation with the
lightest stop. Tevatron collider experiments can test the presence of the light
stop in most of the parameter space. In the co-annihilation region, however,
the mass difference between the light stop and the lightest neutralino varies
between 15 and 30 GeV, presenting an interesting challenge for stop searches at
hadron colliders. We present the prospects for direct detection of dark matter,
which provides a complementary way of testing this scenario. We also derive the
required structure of the high energy soft supersymmetry breaking mass
parameters where the neutralino is a dark matter candidate and the stop
spectrum is consistent with electroweak baryogenesis and the present bounds on
the lightest Higgs mass.Comment: 24 pages, 8 figures; version published in Phys.Rev.
- …