21,184 research outputs found
Effects of state recovery on creep buckling under variable loading
Structural alloys embody internal mechanisms that allow recovery of state with varying stress and elevated temperature, i.e., they can return to a softer state following periods of hardening. Such material behavior is known to strongly influence structural response under some important thermomechanical loadings, for example, that involving thermal ratchetting. The influence of dynamic and thermal recovery on the creep buckling of a column under variable loading is investigated. The column is taken as the idealized (Shanley) sandwich column. The constitutive model, unlike the commonly employed Norton creep model, incorporates a representation of both dynamic and thermal (state) recovery. The material parameters of the constitutive model are chosen to characterize Narloy Z, a representative copper alloy used in thrust nozzle liners of reusable rocket engines. Variable loading histories include rapid cyclic unloading/reloading sequences and intermittent reductions of load for extended periods of time; these are superimposed on a constant load. The calculated results show that state recovery significantly affects creep buckling under variable loading. Structural alloys embody internal mechanisms that allow recovery of state with varying stress and time
Expanded mixed multiscale finite element methods and their applications for flows in porous media
We develop a family of expanded mixed Multiscale Finite Element Methods
(MsFEMs) and their hybridizations for second-order elliptic equations. This
formulation expands the standard mixed Multiscale Finite Element formulation in
the sense that four unknowns (hybrid formulation) are solved simultaneously:
pressure, gradient of pressure, velocity and Lagrange multipliers. We use
multiscale basis functions for the both velocity and gradient of pressure. In
the expanded mixed MsFEM framework, we consider both cases of separable-scale
and non-separable spatial scales. We specifically analyze the methods in three
categories: periodic separable scales, - convergence separable scales, and
continuum scales. When there is no scale separation, using some global
information can improve accuracy for the expanded mixed MsFEMs. We present
rigorous convergence analysis for expanded mixed MsFEMs. The analysis includes
both conforming and nonconforming expanded mixed MsFEM. Numerical results are
presented for various multiscale models and flows in porous media with shales
to illustrate the efficiency of the expanded mixed MsFEMs.Comment: 33 page
Tight focal spots using azimuthally polarised light from a Fresnel cone
When focusing a light beam at high numerical aperture, the resulting electric
field profile in the focal plane depends on the transverse polarisation
profile, as interference between different parts of the beam needs to be taken
into account. It is well known that radial polarised light produces a
longitudinal polarisation component and can be focused below the conventional
diffraction limit for homogeneously polarised light, and azimuthally polarised
light that carries one unit of angular momentum can achieve even tighter focal
spots. This is of interest for example for enhancing resolution in scanning
microscopy. There are numerous ways to generate such polarisation structures,
however, setups can be expensive and usually rely on birefringent components,
hence prohibiting broadband operation. We have recently demonstrated a passive,
low-cost technique using a simple glass cone (Fresnel cone) to generate beams
with structured polarisation. We show here that the polarisation structure
generated by Fresnel cones focuses better than radial polarised light at all
numerical apertures. Furthermore, we investigate in detail the application of
polarised light structures for two-photon microscopy. Specifically we
demonstrate a method that allows us to generate the desired polarisation
structure at the back aperture of the microscope by pre-compensating any
detrimental phase shifts using a combination of waveplates
Active Integrity Constraints and Revision Programming
We study active integrity constraints and revision programming, two
formalisms designed to describe integrity constraints on databases and to
specify policies on preferred ways to enforce them. Unlike other more commonly
accepted approaches, these two formalisms attempt to provide a declarative
solution to the problem. However, the original semantics of founded repairs for
active integrity constraints and justified revisions for revision programs
differ. Our main goal is to establish a comprehensive framework of semantics
for active integrity constraints, to find a parallel framework for revision
programs, and to relate the two. By doing so, we demonstrate that the two
formalisms proposed independently of each other and based on different
intuitions when viewed within a broader semantic framework turn out to be
notational variants of each other. That lends support to the adequacy of the
semantics we develop for each of the formalisms as the foundation for a
declarative approach to the problem of database update and repair. In the paper
we also study computational properties of the semantics we consider and
establish results concerned with the concept of the minimality of change and
the invariance under the shifting transformation.Comment: 48 pages, 3 figure
Transport Coefficients of Gluon Plasma
Transport coefficients of gluon plasma are calculated for a SU(3) pure gauge
model by lattice QCD simulations on and
lattices. Simulations are carried out at a slightly above the deconfinement
transition temperature , where a new state of matter is currently being
pursued in RHIC experiments. Our results show that the ratio of the shear
viscosity to the entropy is less than one and the bulk viscosity is consistent
with zero in the region, .Comment: 10 pages, Late
Unified Viscoplastic Behavior of Metal Matrix Composites
The need for unified constitutive models was recognized more than a decade ago in the results of phenomenological tests on monolithic metals that exhibited strong creep-plasticity interaction. Recently, metallic alloys have been combined to form high-temperature ductile/ductile composite materials, raising the natural question of whether these metallic composites exhibit the same phenomenological features as their monolithic constituents. This question is addressed in the context of a limited, yet definite (to illustrate creep/plasticity interaction) set of experimental data on the model metal matrix composite (MMC) system W/Kanthal. Furthermore, it is demonstrated that a unified viscoplastic representation, extended for unidirectional composites and correlated to W/Kanthal, can accurately predict the observed longitudinal composite creep/plasticity interaction response and strain rate dependency. Finally, the predicted influence of fiber orientation on the creep response of W/Kanthal is illustrated
The SoLid anti-neutrino detector's readout system
The SoLid collaboration have developed an intelligent readout system to
reduce their 3200 silicon photomultiplier detector's data rate by a factor of
10000 whilst maintaining high efficiency for storing data from anti-neutrino
interactions. The system employs an FPGA-level waveform characterisation to
trigger on neutron signals. Following a trigger, data from a space time region
of interest around the neutron will be read out using the IPbus protocol. In
these proceedings the design of the readout system is explained and results
showing the performance of a prototype version of the system are presented
A method to construct refracting profiles
We propose an original method for determining suitable refracting profiles
between two media to solve two related problems: to produce a given wave front
from a single point source after refraction at the refracting profile, and to
focus a given wave front in a fixed point. These profiles are obtained as
envelopes of specific families of Cartesian ovals. We study the singularities
of these profiles and give a method to construct them from the data of the
associated caustic.Comment: 12 pages, 5 figure
Demonstration of an inductively coupled ring trap for cold atoms
We report the first demonstration of an inductively coupled magnetic ring trap for cold atoms. A uniform, ac magnetic field is used to induce current in a copper ring, which creates an opposing magnetic field that is time-averaged to produce a smooth cylindrically symmetric ring trap of radius 5 mm. We use a laser-cooled atomic sample to characterize the loading efficiency and adiabaticity of the magnetic potential, achieving a vacuum-limited lifetime in the trap. This technique is suitable for creating scalable toroidal waveguides for applications in matter-wave interferometry, offering long interaction times and large enclosed areas
Generalized Boltzmann equations for on-shell particle production in a hot plasma
A novel refinement of the conventional treatment of Kadanoff--Baym equations
is suggested. Besides the Boltzmann equation another differential equation is
used for calculating the evolution of the non-equilibrium two-point function.
Although it was usually interpreted as a constraint on the solution of the
Boltzmann equation, we argue that its dynamics is relevant to the determination
and resummation of the particle production cut contributions. The differential
equation for this new contribution is illustrated in the example of the cubic
scalar model. The analogue of the relaxation time approximation is suggested.
It results in the shift of the threshold location and in smearing out of the
non-analytic threshold behaviour of the spectral function. Possible
consequences for the dilepton production are discussed.Comment: 22 pages, latex, 2 ps figure
- …