1 research outputs found
Curves of every genus with many points, I: Abelian and toric families
Let N_q(g) denote the maximal number of F_q-rational points on any curve of
genus g over the finite field F_q. Ihara (for square q) and Serre (for general
q) proved that limsup_{g-->infinity} N_q(g)/g > 0 for any fixed q. In their
proofs they constructed curves with many points in infinitely many genera;
however, their sequences of genera are somewhat sparse. In this paper, we prove
that lim_{g-->infinity} N_q(g) = infinity. More precisely, we use abelian
covers of P^1 to prove that liminf_{g-->infinity} N_q(g)/(g/log g) > 0, and we
use curves on toric surfaces to prove that liminf_{g-->infty} N_q(g)/g^{1/3} >
0; we also show that these results are the best possible that can be proved
with these families of curves.Comment: LaTeX, 20 page