711 research outputs found

    Spin Dependent Drell Yan in QCD to O(αs2)O(\alpha_s^2) (I). (The Non-Singlet Sector)

    Full text link
    A study of the order αs2\alpha_s^2 corrections to the Drell Yan (non-singlet) cross section for incoming states of arbitrary longitudinal helicities is presented. The study is performed in the case of the transverse momentum distributions, (qT)(q_T), of the lepton pair and extends the calculation of Ellis Martinelli and Petronzio (EMP) to the polarized case. We use the MSˉ\bar{MS} scheme and the t'Hooft-Veltman regularization for the helicity projectors. From our results one can obtain the bulk of the totally inclusive NNLO cross section for the production of a Drell Yan pair in the non-singlet sector by a simple integration over the heavy photon momentum. We show that in the MSˉ\bar{MS} helicity is not conserved, unless a finite renormalization is done to reenter into a physical scheme (MSˉp\bar{MS}_p). This aspect of the calculation follows the same trend as in polarized production of single and double photon to O(αs2)O(\alpha_s^2). In the unpolarized limit we reproduce all the results of EMP.Comment: 39 pages, 7 figures (included

    Transport coefficients, spectral functions and the lattice

    Get PDF
    Transport coefficients are determined by the slope of spectral functions of composite operators at zero frequency. We study the spectral function relevant for the shear viscosity for arbitrary frequencies in weakly-coupled scalar and nonabelian gauge theories at high temperature and compute the corresponding correlator in euclidean time. We discuss whether nonperturbative values of transport coefficients can be extracted from euclidean lattice simulations.Comment: 25 pages with 7 eps figures, discussion improved, acknowledgement added; to appear in JHE

    Subglacial Water Flow Over an Antarctic Palaeo‐Ice Stream Bed

    Get PDF
    The subglacial hydrological system exerts a critical control on the dynamic behavior of the overlying ice because its configuration affects the degree of basal lubrication between the ice and the bed. Yet, this component of the glaciological system is notoriously hard to access and observe, particularly over timescales longer than the satellite era. In Antarctica, abundant evidence for past subglacial water flow over former ice-sheet beds exists around the peripheries of the ice sheet including networks of huge channels carved into bedrock (now submarine) on the Pacific margin of West Antarctica. Here, we combine detailed bathymetric investigations of a channel system in Marguerite Trough, a major palaeo-ice stream bed, with numerical hydrological modeling to explore subglacial water accumulation, routing and potential for erosion over decadal-centennial timescales. Detailed channel morphologies from remotely operated vehicle surveys indicate multiple stages of localized incision, and the occurrence of potholes, some gigantic in scale, suggests incision by turbulent water carrying a significant bedload. Further, the modeling indicates that subglacial water is available during deglaciation and was likely released in episodic drainage events, from subglacial lakes, varying in magnitude over time. Our observations support previous assertions that these huge bedrock channel systems were incised over multiple glacial cycles through episodic subglacial lake drainage events; however, here we present a viable pattern for subglacial drainage at times when the ice sheet existed over the continental shelf and was capable of continuing to erode the bedrock substrate

    Small, Dense Quark Stars from Perturbative QCD

    Get PDF
    As a model for nonideal behavior in the equation of state of QCD at high density, we consider cold quark matter in perturbation theory. To second order in the strong coupling constant, αs\alpha_s, the results depend sensitively on the choice of the renormalization mass scale. Certain choices of this scale correspond to a strongly first order chiral transition, and generate quark stars with maximum masses and radii approximately half that of ordinary neutron stars. At the center of these stars, quarks are essentially massless.Comment: ReVTeX, 5 pages, 3 figure

    The Pressure of Hot g2ϕ4g^2 \phi^4 Theory at order g5g^5

    Full text link
    The order g5g^5 contribution to the pressure of massless g2ϕ4g^2 \phi^4 theory at nonzero temperature is obtained explicitly. Lower order contributions are reconsidered and two issues leading to the optimal choice of rearranged Lagrangian for such calculations are clarified.Comment: 15 pages, Latex, postscript file attached at the en

    Are direct photons a clean signal of a thermalized quark gluon plasma?

    Full text link
    Direct photon production from a quark gluon plasma (QGP) in thermal equilibrium is studied directly in real time. In contrast to the usual S-matrix calculations, the real time approach is valid for a QGP that formed and reached LTE a short time after a collision and of finite lifetime (1020fm/c\sim 10-20 \mathrm{fm}/c as expected at RHIC or LHC). We point out that during such finite QGP lifetime the spectrum of emitted photons carries information on the initial state. There is an inherent ambiguity in separating the virtual from the observable photons during the transient evolution of the QGP. We propose a real time formulation to extract the photon yield which includes the initial stage of formation of the QGP parametrized by an effective time scale of formation Γ1\Gamma^{-1}. This formulation coincides with the S-matrix approach in the infinite lifetime limit. It allows to separate the virtual cloud as well as the observable photons emitted during the pre- equilibrium stage from the yield during the QGP lifetime. We find that the lowest order contribution O(αem)\mathcal{O}(\alpha_{em}) which does \emph{not} contribute to the S-matrix approach, is of the same order of or larger than the S-matrix contribution during the lifetime of the QGP for a typical formation time 1fm/c\sim 1 \mathrm{fm}/c. The yield for momenta 3Gev/c\gtrsim 3 \mathrm{Gev}/c features a power law fall-off T3Γ2/k5\sim T^3 \Gamma^2/k^{5} and is larger than that obtained with the S-matrix for momenta 4Gev/c\geq 4 \mathrm{Gev}/c. We provide a comprehensive numerical comparison between the real time and S-matrix yields and study the dynamics of the build-up of the photon cloud and the different contributions to the radiative energy loss. The reliability of the current estimates on photon emission is discussed.Comment: 31 pages, 12 eps figures, version to appear in PR

    Dynamical renormalization group approach to transport in ultrarelativistic plasmas: the electrical conductivity in high temperature QED

    Full text link
    The DC electrical conductivity of an ultrarelativistic QED plasma is studied in real time by implementing the dynamical renormalization group. The conductivity is obtained from the realtime dependence of a dissipative kernel related to the retarded photon polarization. Pinch singularities in the imaginary part of the polarization are manifest as growing secular terms that in the perturbative expansion of this kernel. The leading secular terms are studied explicitly and it is shown that they are insensitive to the anomalous damping of hard fermions as a result of a cancellation between self-energy and vertex corrections. The resummation of the secular terms via the dynamical renormalization group leads directly to a renormalization group equation in real time, which is the Boltzmann equation for the (gauge invariant) fermion distribution function. A direct correspondence between the perturbative expansion and the linearized Boltzmann equation is established, allowing a direct identification of the self energy and vertex contributions to the collision term.We obtain a Fokker-Planck equation in momentum space that describes the dynamics of the departure from equilibrium to leading logarithmic order in the coupling.This determines that the transport time scale is given by t_{tr}=(24 pi)/[e^4 T \ln(1/e)}]. The solution of the Fokker-Planck equation approaches asymptotically the steady- state solution as sim e^{-t/(4.038 t_{tr})}.The steady-state solution leads to the conductivity sigma = 15.698 T/[e^2 ln(1/e)] to leading logarithmic order. We discuss the contributions beyond leading logarithms as well as beyond the Boltzmann equation. The dynamical renormalization group provides a link between linear response in quantum field theory and kinetic theory.Comment: LaTex, 48 pages, 14 .ps figures, final version to appear in Phys. Rev.

    Dileptons from hot heavy static photons

    Full text link
    We compute the production rate of lepton pair by static photons at finite temperature at two-loop order. We treat the infrared region of the gluon phase space carefully by using a hard thermal loop gluon propagator. The result is free of infrared and collinear divergences and exhibits an enhancement which produces a result of order e2g3\sim e^2 g^3 instead of e2g4\sim e^2 g^4 as would be expected from ordinary perturbation theory.Comment: 14 pages, 2 figure

    The Equation of State for Dense QCD and Quark Stars

    Get PDF
    We calculate the equation of state for degenerate quark matter to leading order in hard-dense-loop (HDL) perturbation theory. We solve the Tolman-Oppenheimer-Volkov equations to obtain the mass-radius relation for dense quark stars. Both the perturbative QCD and the HDL equations of state have a large variation with respect to the renormalization scale for quark chemical potential below 1 GeV which leads to large theoretical uncertainties in the quark star mass-radius relation.Comment: 7 pages, 3 figure

    Dynamical Renormalization Group Approach to Quantum Kinetics in Scalar and Gauge Theories

    Get PDF
    We derive quantum kinetic equations from a quantum field theory implementing a diagrammatic perturbative expansion improved by a resummation via the dynamical renormalization group. The method begins by obtaining the equation of motion of the distribution function in perturbation theory. The solution of this equation of motion reveals secular terms that grow in time, the dynamical renormalization group resums these secular terms in real time and leads directly to the quantum kinetic equation. We used this method to study the relaxation in a cool gas of pions and sigma mesons in the O(4) chiral linear sigma model. We obtain in relaxation time approximation the pion and sigma meson relaxation rates. We also find that in large momentum limit emission and absorption of massless pions result in threshold infrared divergence in sigma meson relaxation rate and lead to a crossover behavior in relaxation. We then study the relaxation of charged quasiparticles in scalar electrodynamics (SQED). While longitudinal, Debye screened photons lead to purely exponential relaxation, transverse photons, only dynamically screened by Landau damping lead to anomalous relaxation, thus leading to a crossover between two different relaxational regimes. We emphasize that infrared divergent damping rates are indicative of non-exponential relaxation and the dynamical renormalization group reveals the correct relaxation directly in real time. Finally we also show that this method provides a natural framework to interpret and resolve the issue of pinch singularities out of equilibrium and establish a direct correspondence between pinch singularities and secular terms. We argue that this method is particularly well suited to study quantum kinetics and transport in gauge theories.Comment: RevTeX, 40 pages, 4 eps figures, published versio
    corecore