672 research outputs found

    Critical Susceptibility Exponent Measured from Fe/W(110) Bilayers

    Full text link
    The critical phase transition in ferromagnetic ultrathin Fe/W(110) films has been studied using the magnetic ac susceptibility. A statistically objective, unconstrained fitting of the susceptibility is used to extract values for the critical exponent (gamma), the critical temperature Tc, the critical amplitude (chi_o) and the range of temperature that exhibits power-law behaviour. A fitting algorithm was used to simultaneously minimize the statistical variance of a power law fit to individual experimental measurements of chi(T). This avoids systematic errors and generates objective fitting results. An ensemble of 25 measurements on many different films are analyzed. Those which permit an extended fitting range in reduced temperature lower than approximately .00475 give an average value gamma=1.76+-0.01. Bilayer films give a weighted average value of gamma = 1.75+-0.02. These results are in agreement with the -dimensional Ising exponent gamma= 7/4. Measurements that do not exhibit power-law scaling as close to Tc (especially films of thickness 1.75ML) show a value of gamma higher than the Ising value. Several possibilities are considered to account for this behaviour.Comment: -Submitted to Phys. Rev. B -Revtex4 Format -6 postscript figure

    Characterization of an INVS Model IV Neutron Counter for High Precision (γ,n\gamma,n) Cross-Section Measurements

    Full text link
    A neutron counter designed for assay of radioactive materials has been adapted for beam experiments at TUNL. The cylindrical geometry and 60% maximum efficiency make it well suited for (γ,n\gamma,n) cross-section measurements near the neutron emission threshold. A high precision characterization of the counter has been made using neutrons from several sources. Using a combination of measurements and simulations, the absolute detection efficiency of the neutron counter was determined to an accuracy of ±\pm 3% in the neutron energy range between 0.1 and 1 MeV. It is shown that this efficiency characterization is generally valid for a wide range of targets.Comment: 22 pages, 13 figure

    Phakomatosis Pigmentovascularis

    Get PDF
    We report a patient with phakomatosis pigmentovascularis IIb and numerous iris hamartomas. Phakomatosis pigmentovascularis IIb is characterized by the simultaneous occurrence of a nevus flammeus, a mongolian spot, and sometimes a nevus anemicus in the same individual, with systemic involvement. To our knowledge, the association with multiple iris hamartomas has been reported only once. This second patient suggests that the association might be more common. Additional reports will indicate if such an association is more frequent than is now assumed

    Three Dimensional N=2 Supersymmetry on the Lattice

    Full text link
    We show how 3-dimensional, N=2 supersymmetric theories, including super QCD with matter fields, can be put on the lattice with existing techniques, in a way which will recover supersymmetry in the small lattice spacing limit. Residual supersymmetry breaking effects are suppressed in the small lattice spacing limit by at least one power of the lattice spacing a.Comment: 21 pages, 2 figures, typo corrected, reference adde

    Dynamics near the critical point: the hot renormalization group in quantum field theory

    Get PDF
    The perturbative approach to the description of long wavelength excitations at high temperature breaks down near the critical point of a second order phase transition. We study the \emph{dynamics} of these excitations in a relativistic scalar field theory at and near the critical point via a renormalization group approach at high temperature and an ϵ\epsilon expansion in d=5ϵd=5-\epsilon space-time dimensions. The long wavelength physics is determined by a non-trivial fixed point of the renormalization group. At the critical point we find that the dispersion relation and width of quasiparticles of momentum pp is ωppz\omega_p \sim p^{z} and Γp(z1)ωp\Gamma_p \sim (z-1) \omega_p respectively, the group velocity of quasiparticles vgpz1v_g \sim p^{z-1} vanishes in the long wavelength limit at the critical point. Away from the critical point for TTcT\gtrsim T_c we find ωpξz[1+(pξ)2z]1/2\omega_p \sim \xi^{-z}[1+(p \xi)^{2z}]^{{1/2}} and Γp(z1)ωp(pξ)2z1+(pξ)2z\Gamma_p \sim (z-1) \omega_p \frac{(p \xi)^{2z}}{1+(p \xi)^{2z}} with ξ\xi the finite temperature correlation length ξTTcν \xi \propto |T-T_c|^{-\nu}. The new \emph{dynamical} exponent zz results from anisotropic renormalization in the spatial and time directions. For a theory with O(N) symmetry we find z=1+ϵN+2(N+8)2+O(ϵ2)z=1+ \epsilon \frac{N+2}{(N+8)^2}+\mathcal{O}(\epsilon^2). Critical slowing down, i.e, a vanishing width in the long-wavelength limit, and the validity of the quasiparticle picture emerge naturally from this analysis.Comment: Discussion on new dynamical universality class. To appear in Phys. Rev.

    ESC NN-Potentials in Momentum Space. II. Meson-Pair Exchange Potentials

    Full text link
    The partial wave projection of the Nijmegen soft-core potential model for Meson-Pair-Exchange (MPE) for NN-scattering in momentum space is presented. Here, nucleon-nucleon momentum space MPE-potentials are NN-interactions where either one or both nucleons contains a meson-pair vertex. Dynamically, the meson-pair vertices can be viewed as describing in an effective way (part of) the effects of heavy-meson exchange and meson-nucleon resonances. From the point of view of ``duality,'' these two kinds of contribution are roughly equivalent. Part of the MPE-vertices can be found in the chiral-invariant phenomenological Lagrangians that have a basis in spontaneous broken chiral symmetry. It is shown that the MPE-interactions are a very important component of the nuclear force, which indeed enables a very succesful description of the low and medium energy NN-data. Here we present a precise fit to the NN-data with the extended-soft-core (ESC) model containing OBE-, PS-PS-, and MPE-potentials. An excellent description of the NN-data for TLab350T_{Lab} \leq 350 MeV is presented and discussed. Phase shifts are given and a χp.d.p.2=1.15\chi^2_{p.d.p.} = 1.15 is reached.Comment: 27 pages, 5 PostScript figures, revtex

    Molecular Dynamics Simulation of Semiflexible Polyampholyte Brushes - The Effect of Charged Monomers Sequence

    Full text link
    Planar brushes formed by end-grafted semiflexible polyampholyte chains, each chain containing equal number of positively and negatively charged monomers is studied using molecular dynamics simulations. Keeping the length of the chains fixed, dependence of the average brush thickness and equilibrium statistics of the brush conformations on the grafting density and the salt concentration are obtained with various sequences of charged monomers. When similarly charged monomers of the chains are arranged in longer blocks, the average brush thickness is smaller and dependence of brush properties on the grafting density and the salt concentration is stronger. With such long blocks of similarly charged monomers, the anchored chains bond to each other in the vicinity of the grafting surface at low grafting densities and buckle toward the grafting surface at high grafting densities.Comment: 8 pages,7 figure

    Nonconstant electronic density of states tunneling inversion for A15 superconductors: Nb3Sn

    Full text link
    We re-examine the tunneling data on A15 superconductors by performing a generalized McMillan-Rowell tunneling inversion that incorporates a nonconstant electronic density of states obtained from band-structure calculations. For Nb3Sn, we find that the fit to the experimental data can be slightly improved by taking into account the sharp structure in the density of states, but it is likely that such an analysis alone is not enough to completely explain the superconducting tunneling characteristics of this material. Nevertheless, the extracted Eliashberg function displays a number of features expected to be present for the highest quality Nb3Sn samples.Comment: 11 pages, 11 figure

    Moving constraints as stabilizing controls in classical mechanics

    Full text link
    The paper analyzes a Lagrangian system which is controlled by directly assigning some of the coordinates as functions of time, by means of frictionless constraints. In a natural system of coordinates, the equations of motions contain terms which are linear or quadratic w.r.t.time derivatives of the control functions. After reviewing the basic equations, we explain the significance of the quadratic terms, related to geodesics orthogonal to a given foliation. We then study the problem of stabilization of the system to a given point, by means of oscillating controls. This problem is first reduced to the weak stability for a related convex-valued differential inclusion, then studied by Lyapunov functions methods. In the last sections, we illustrate the results by means of various mechanical examples.Comment: 52 pages, 4 figure

    Characterization of an INVS model IV neutron counter for high precision cross-section measurements

    Get PDF
    A neutron counter designed for assay of radioactive materials has been adapted for beam experiments at TUNL. The cylindrical geometry and 60% maximum efficiency make it well suited for (γ, n) cross-section measurements near the neutron emission threshold. A high precision characterization of the counter has been made using neutrons from several sources. Using a combination of measurements and simulations, the absolute detection efficiency of the neutron counter was determined to an accuracy of ± 3% in the neutron energy range between 0.1 and 1 MeV. It is shown that this efficiency characterization is generally valid for a wide range of targets
    corecore