5 research outputs found

    Table1.XLS

    No full text
    <p>Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila, one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species.</p

    Image1.PDF

    No full text
    <p>Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila, one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species.</p

    Image2.PDF

    No full text
    <p>Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila, one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species.</p

    Video1.mp4

    No full text
    <p>Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila, one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species.</p

    Fly Light Split-GAL4 Driver Collection

    No full text
    <p>The data presented on this site are the work of the <a href="http://janelia.org/team-project/fly-light" target="_blank">Janelia FlyLight Project Team</a> and the laboratories of <a href="http://www.janelia.org/lab/rubin-lab" target="_blank">Gerald M. Rubin</a>. </p><p>The split-GAL4 lines can be requested from the Janelia fly facility by performing a search and adding the desired lines to your cart. You will then be able to use the FlyBank website to tell us where to send them. For additional help ordering lines, please contact us at <a href="mailto:flybank.janelia.org">flybank.janelia.org</a></p><p>In publications, please attribute the data presented on this site to one of the following papers, as follows: <br><br>For the overall strategy and methods used to produce the split-GAL4 lines for the mushroom body neurons: <br>Aso, Y., Hattori, D., Yu, Y., Johnston, R. M., Iyer, N., Ngo, T. B., Dionne, H., Abbott, L. F., Axel, R., Tanimoto, H. & Rubin, G. M. . The neuronal architecture of the mushroom body provides a logic for associative learning. <a href="http://elifesciences.org/content/3/e04577" target="_blank">eLife (2014) 3:e04577</a><br><br>For split-GAL4 lines for the Lobula Columnar (LC) visual projection neurons:<br>Wu, M., Nern, A., Williamson, W. R., Morimoto, M. M., Reiser, M. B., Card, G. M. & Rubin, G. M. Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. under review<br><br>For refinement of the split-GAL4 vectors and methodology: <br>Pfeiffer, B. D., Ngo, T. T., Hibbard, K. L., Murphy, C., Jenett, A., Truman, J. W. & Rubin, G. M. Refinement of tools for targeted gene expression in Drosophila. <a href="http://www.genetics.org/content/186/2/735.long" target="_blank">Genetics (2010) 186: 735-55</a>. <br><br>For Multicolor Flp-out (MCFO) technique and single cell labeling:<br>Nern, A., Pfeiffer, B.D., and Rubin, G.M. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. <a href="http://www.pnas.org/content/112/22/E2967.long" target="_blank">Proc Natl Acad Sci USA (2015) 112: E2967-2976</a>. <br><br>Split-GAL4 lines were designed based on the expression patterns of GAL4 driver lines in the adult nervous system: <br>The Janelia collection of lines is described in Jenett, A., Rubin, G.M., Ngo, T.-T. B., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B.D., Cavallaro, A., Hall, D., Jeter, J., Iyer, N., Fetter, D., Hausenfluck, J.H., Peng, H., Trautman, E., Svirskas, R., Myers, G.W., Iwinski, Z.R., Aso, Y., DePasquale, G.M., Enos, A., Hulamm, P., Lam, S.C.B., Li, H-H., Laverty, T., Long, F., Qu, L., Murphy, S.D., Rokicki, K., Safford, T., Shaw, K., Simpson, J.H., Sowell, A., Tae, S., Yu, Y., Zugates, C.T. A GAL4-Driver Line Resource for Drosophila Neurobiology. <a href="http://www.cell.com/cell-reports/fulltext/S2211-1247(12)00292-6" target="_blank">Cell Reports (2012) 2: 991-1001</a> <br><br>The VT collection of lines is described in Kvon, E.Z., Kazmar, T., Stampfel, G., Yanez-Cuna, J.O., Pagani, M., Schernhuber, K., Dickson, B.J., and Stark, A. Genome-scale functional characterization of Drosophila developmental enhancers in vivo. <a href="http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13395.html" target="_blank">Nature (2014) 512: 91-95</a> and Barry J. Dickson, unpublished data. <br><br>For opening and viewing h5j and LSM stacks:<br>Use <a href="http://fiji.sc/" target="_blank">Fiji</a> (<a href="http://fiji.sc/" target="_blank">http://fiji.sc</a>). Fiji has a built-in plugin (H5J_Loader_Plugin-1.0.4) for opening stack in h5j format, a "visually lossless" compression format.</p
    corecore