47 research outputs found

    Extracorporeal cytokine adsorption reduces systemic cytokine storm and improves graft function in lung transplantation

    Full text link
    OBJECTIVES Ischemia-reperfusion injury often coincides with a cytokine storm, which can result in primary graft dysfunction following lung transplantation. Our previous research has demonstrated allograft improvement by cytokine adsorption during ex vivo lung perfusion. The aim of this study was to investigate the effect of in vivo extracorporeal cytokine adsorption in a large animal model. MATERIALS AND METHODS Pig left lung transplantation was performed following 24 hours of cold ischemic storage. Observation period after transplantation was 24 hours. In the treatment group (n = 6), extracorporeal CytoSorb adsorption was started 30 minutes before reperfusion and continued for 6 hours. A control group (n = 3) did not receive adsorber treatment. RESULTS During adsorption, we consistently noticed a significant decrease in plasma proinflammatory interleukin (IL)-2, trends of less proinflammatory, tumor necrosis factor- α, IL-1α, and granulocyte-macrophage colony-stimulating factor as well as significantly reduced systemic neutrophils. In addition, a significantly lower peak airway pressure was detected during the 6 hours of adsorption. After 24 hours of observation, when evaluating the left lung allograft independently, we observed significantly improved CO2 removal, partial pressure of oxygen/inspired oxygen fraction ratio, and less acidosis in the treatment group. At autopsy, bronchoalveolar lavage results exhibited significantly lower recruitment of cells and less pro-inflammatory IL-1α, IL-1β, IL-6, and IL-8 in the treatment group. Histologically, the treatment group had a strong trend, indicating less neutrophil invasion into the alveolar space. CONCLUSIONS Based on our findings, cytokine adsorption during and after reperfusion is a viable approach to reducing posttransplant inflammation following lung transplantation. CytoSorb may increase the acceptance of extended criteria donor lungs, which are more susceptible to ischemia-reperfusion injury

    Ameliorative effect of IDS30, a stinging nettle leaf extract, on chronic colitis

    Get PDF
    Background and aims: Anti-TNF-α antibodies are very effective in the treatment of acute Crohn's disease, but are limited by the decline of their effectiveness after repeated applications. The stinging nettle leaf extract, IDS30, is an adjuvant remedy in rheumatic diseases dependent on a cytokine suppressive effect. We investigated the effect of IDS30 on disease activity of murine colitis in different models. Methods: C3H.IL-10−/− and BALB/c mice with colitis induced by dextran sodium sulphate (DSS) were treated with either IDS30 or water. Mice were monitored for clinical signs of colitis. Inflammation was scored histologically, and faecal IL-1β and mucosal cytokines were measured by ELISA. Mononuclear cell proliferation of spleen and Peyer's patches were quantified by 3H-thymidine. Results: Mice with chronic DSS colitis or IL-10−/− mice treated with IDS30 clinically and histologically revealed significantly (p<0.05) fewer signs of colitis than untreated animals. Furthermore, faecal IL-1β and mucosal TNF-α concentrations were significantly lower (p<0.05) in treated mice. Mononuclear cell proliferation after stimulation with lipopolysaccharide was significantly (p<0.001) reduced in mice treated with IDS30. Conclusions: The long-term use of IDS30 is effective in the prevention of chronic murine colitis. This effect seems to be due to a decrease in the Th1 response and may be a new therapeutic option for prolonging remission in inflammatory bowel diseas

    CD26/DPP-4 inhibition recruits regenerative stem cells via stromal cell-derived factor-1 and beneficially influences ischaemia-reperfusion injury in mouse lung transplantation†

    Get PDF
    OBJECTIVES The CD26 antigen is a transmembrane glycoprotein that is constitutively expressed on activated lymphocytes and in pulmonary parenchyma. This molecule is also identified as dipeptidyl peptidase-4 (DPP-4) that cleaves a host of biologically active peptides. Here, we aimed to identify an important substrate of CD26/DPP-4—stromal cell-derived factor-1 (SDF-1/CXCL12)—as a key modulator for stem-cell homing together with its receptor CXCR4 in response to ischaemic injury of the lung. METHODS Orthotopic single lung transplantation (Tx) was performed between syngeneic C57BL/6 mice. Inhibition of CD26/DPP-4 activity in recipients was achieved using vildagliptin (10mg/kg, every 12h) subcutaneously, and 6h ischaemia time was applied prior to implantation. Forty-eight hours after Tx, lung histology, SDF-1 levels (enzyme-linked immunosorbent assay) in lung, spleen and plasma, and expression of the SDF-1 receptor CXCR4 in blood and lung were assessed. Homing of regenerative progenitor cells to the transplanted lung was evaluated using fluorescent-activated cell sorting. RESULTS Compared with untreated lung transplanted mice, systemic DPP-4 inhibition of Tx recipients resulted in an increase in protein concentration of SDF-1 in plasma, spleen and lung. Concordantly, the frequency of cells bearing the SDF-1 receptor CXCR4 rose significantly in the circulation and also in the lungs of DPP-4-inhibited recipients. We found co-expression of CXCR4/CD34 in the grafts of animals treated with vildagliptin, and the stem-cell markers Flt-3 and c-kit were present on a significantly increased number of cells. The morphology of grafts from DPP-4 inhibitor-treated recipients revealed less alveolar oedema when compared with untreated recipients. CONCLUSIONS Targeting the SDF-1-CXCR4 axis through CD26/DPP-4 inhibition increased the intragraft number of progenitor cells contributing to the recovery from ischaemia-reperfusion lung injury. Stabilization of endogenous SDF-1 is achievable and may be a promising strategy to intensify sequestration of regenerative stem cells and thus emerges as a novel therapeutic concep

    A Comprehensive Review on the Surgical Aspect of Lung Transplant Models in Mice and Rats

    Full text link
    Lung transplantation improves the outcome and quality of life of patients with end-stage pulmonary disease. However, the procedure is still hampered by the lack of suitable donors, the complexity of the surgery, and the risk of developing chronic lung allograft dysfunction. Over the past decades, translational experiments in animal models have led to a better understanding of physiology and immunopathology following the lung transplant procedure. Small animal models (e.g., rats and mice) are mostly used in experiments regarding immunology and pathobiology and are preferred over large animal models due to the ethical aspects, the cost-benefit balance, and the high throughput possibility. In this comprehensive review, we summarize the reported surgical techniques for lung transplantation in rodent models and the management of perioperative complications. Furthermore, we propose a guide to help identify the appropriate species for a given experiment and discuss recent experimental findings in small animal lung transplant models

    Subnormothermic ex vivo lung perfusion attenuates ischemia reperfusion injury from donation after circulatory death donors

    Full text link
    Use of normothermic ex vivo lung perfusion (EVLP) was adopted in clinical practice to assess the quality of marginal donor lungs. Subnormothermic perfusion temperatures are in use among other solid organs to improve biochemical, clinical and immunological parameters. In a rat EVLP model of donation after circulatory death (DCD) lung donors, we tested the effect of four subnormothermic EVLP temperatures that could further improve organ preservation. Warm ischemic time was of 2 hours. EVLP time was of 4 hours. Lung physiological data were recorded and metabolic parameters were assessed. Lung oxygenation at 21°C and 24°C were significantly improved whereas pulmonary vascular resistance and edema formation at 21°C EVLP were significantly worsened when compared to 37°C EVLP. The perfusate concentrations of potassium ions and lactate exiting the lungs with 28°C EVLP were significantly lower whereas sodium and chlorine ions with 32°C EVLP were significantly higher when compared to 37°C EVLP. Also compared to 37°C EVLP, the pro-inflammatory chemokines MIP2, MIP-1α, GRO-α, the cytokine IL-6 were significantly lower with 21°C, 24°C and 28°C EVLP, the IL-18 was significantly lower but only with 21°C EVLP and IL-1β was significantly lower at 21°C and 24°C EVLP. Compared to the 37°C EVLP, the lung tissue ATP content after 21°C, 24°C and 28°C EVLP were significantly higher, the carbonylated protein content after 28°C EVLP was significantly lower and we measured significantly higher myeloperoxidase activities in lung tissues with 21°C, 24°C and 32°C. The 28°C EVLP demonstrated acceptable physiological variables, significantly higher lung tissue ATP content and decreased tissue carbonylated proteins with reduced release of pro-inflammatory cytokines. In conclusion, the 28°C EVLP is a non inferior setting in comparison to the clinically approved 37°C EVLP and significantly improve biochemical, clinical and immunological parameters and may reduce I/R injuries of DCD lung donors

    Ex Vivo Lung Perfusion with K(ATP) Channel Modulators Antagonize Ischemia Reperfusion Injury

    No full text
    Ex vivo lung perfusion (EVLP) has been implemented to increase the number of donor lungs available for transplantation. The use of K(ATP) channel modulators during EVLP experiments may protect against lung ischemia-reperfusion injury and may inhibit the formation of reactive oxygen species. In a rat model of donation after circulatory death with 2 h warm ischemic time, we evaluated rat lungs for a 4-hour time in EVLP containing either mitochondrial-specific or plasma membrane and/or sarcolemmal-specific forms of K(ATP) channel modulators. Lung physiological data were recorded, and metabolic parameters were assessed. When compared to the control group, in the EVLP performed with diazoxide or 5-hydroxydecanoic acid (5-HD) we recorded significantly lower pulmonary vascular resistance and only in the diazoxide group recorded significant lung weight loss. In the perfusate of the 5-HD group, interleukin-1β and interleukin-1α were significantly lower when compared to the control group. Perfusate levels of calcium ions were significantly higher in both 5-HD and cromakalim groups, whereas the levels of calcium, potassium, chlorine and lactate were reduced in the diazoxide group, although not significantly when compared to the control. The use of a diazoxide mitochondrial-specific K(ATP) channel opener during EVLP improved lung physiological and metabolic parameters and reduced edema

    Subnormothermic Ex Vivo Lung Perfusion Temperature Improves Graft Preservation in Lung Transplantation

    No full text
    Normothermic machine perfusion is clinically used to assess the quality of marginal donor lungs. Although subnormothermic temperatures have proven beneficial for other solid organ transplants, subnormothermia-related benefits of ex vivo lung perfusion (EVLP) still need to be investigated. Material and Methods: In a rat model, we evaluated the effects of 28 °C temperature on 4-h EVLPs with subsequent left lung transplantation. The recipients were observed for 2 h postoperatively. Lung physiology data were recorded and metabolic parameters were assessed. Results: During the 4-h subnormothermic EVLP, the lung oxygenation was significantly higher (p < 0.001), pulmonary vascular resistance (PVR) lower and dynamic compliance (Cdyn) higher when compared to the 37 °C EVLP. During an end-of-EVLP stress test, we recorded significantly higher flow (p < 0.05), lower PVR (p < 0.05) and higher Cdyn (p < 0.01) in the 28 °C group when compared to the 37 °C group. After the left lung transplantation, Cdyn and oxygenation improved in the 28 °C group, which were comparable to the 37 °C group. Chemokines RANTES, MIP-3α, MIP-1α MCP-1 GRO/KC and pro-inflammatory mediators GM-CSF, G-CSF and TNFα were significantly lower after the 28 °C EVLP and remained low in the plasma of the recipient rats after transplantation. The lungs of the 28 °C group showed significantly lowered myeloperoxidase activity and lowered levels of TNFα and IL-1β. Conclusions: Compared to the normothermic perfusion, the 28 °C EVLP improved Cdyn and PVR and reduced both the release of pro-inflammatory cytokines and myeloperoxidase activity in lung tissue. These observations were also observed after the left lung transplantation in the subnormothermic group. The 28 °C EVLP significantly improved biochemical, physiological and inflammatory parameters in lung donors

    Perfluorocarbon-Based Oxygen Carriers and Subnormothermic Lung Machine Perfusion Decrease Production of Pro-Inflammatory Mediators

    No full text
    The quality of marginal donor lungs is clinically assessed with normothermic machine perfusion. Although subnormothermic temperature and perfluorocarbon-based oxygen carriers (PFCOC) have proven favourable for other organ transplants, their beneficial use for ex vivo lung perfusion (EVLP) still requires further investigation. In a rat model, we evaluated on a 4 h EVLP time the effects of PFCOC with either 28 °C or 37 °C perfusion temperatures. During EVLP at 28 °C with PFCOC, we recorded significantly lower lung pulmonary vascular resistance (PVR), higher dynamic compliance (Cdyn), significantly lower potassium and lactate levels, higher lung tissue ATP content, and significantly lower myeloperoxidase tissue activity when compared to the 37 °C EVLP with PFCOC. In the subnormothermic EVLP with or without PFCOC, the pro-inflammatory mediator TNFα, the cytokines IL-6 and IL-7, the chemokines MIP-3α, MIP-1α, MCP-1, GRO/KC as well as GM-CSF, G-CSF and the anti-inflammatory cytokines IL-4 and IL-10 were significantly lower. The 28 °C EVLP improved both Cdyn and PVR and decreased pro-inflammatory cytokines and pCO2 levels compared to the 37 °C EVLP. In addition, the 28 °C EVLP with PFCOC produced a significantly lower level of myeloperoxidase activity in lung tissue. Subnormothermic EVLP with PFCOC significantly improves lung donor physiology and ameliorates lung tissue biochemical and inflammatory parameters

    Subnormothermic Ex Vivo Lung Perfusion Temperature Improves Graft Preservation in Lung Transplantation

    No full text
    Normothermic machine perfusion is clinically used to assess the quality of marginal donor lungs. Although subnormothermic temperatures have proven beneficial for other solid organ transplants, subnormothermia-related benefits of ex vivo lung perfusion (EVLP) still need to be investigated. Material and Methods: In a rat model, we evaluated the effects of 28 °C temperature on 4-h EVLPs with subsequent left lung transplantation. The recipients were observed for 2 h postoperatively. Lung physiology data were recorded and metabolic parameters were assessed. Results: During the 4-h subnormothermic EVLP, the lung oxygenation was significantly higher (p &lt; 0.001), pulmonary vascular resistance (PVR) lower and dynamic compliance (Cdyn) higher when compared to the 37 °C EVLP. During an end-of-EVLP stress test, we recorded significantly higher flow (p &lt; 0.05), lower PVR (p &lt; 0.05) and higher Cdyn (p &lt; 0.01) in the 28 °C group when compared to the 37 °C group. After the left lung transplantation, Cdyn and oxygenation improved in the 28 °C group, which were comparable to the 37 °C group. Chemokines RANTES, MIP-3α, MIP-1α MCP-1 GRO/KC and pro-inflammatory mediators GM-CSF, G-CSF and TNFα were significantly lower after the 28 °C EVLP and remained low in the plasma of the recipient rats after transplantation. The lungs of the 28 °C group showed significantly lowered myeloperoxidase activity and lowered levels of TNFα and IL-1β. Conclusions: Compared to the normothermic perfusion, the 28 °C EVLP improved Cdyn and PVR and reduced both the release of pro-inflammatory cytokines and myeloperoxidase activity in lung tissue. These observations were also observed after the left lung transplantation in the subnormothermic group. The 28 °C EVLP significantly improved biochemical, physiological and inflammatory parameters in lung donors
    corecore