2 research outputs found

    Improved vision-based diagnosis of multi-plant disease using an ensemble of deep learning methods

    Get PDF
    Farming and plants are crucial parts of the inward economy of a nation, which significantly boosts the economic growth of a country. Preserving plants from several disease infections at their early stage becomes cumbersome due to the absence of efficient diagnosis tools. Diverse difficulties lie in existing methods of plant disease recognition. As a result, developing a rapid and efficient multi-plant disease diagnosis system is a challenging task. At present, deep learning-based methods are frequently utilized for diagnosing plant diseases, which outperformed existing methods with higher efficiency. In order to investigate plant diseases more accurately, this article addresses an efficient hybrid approach using deep learning-based methods. Xception and ResNet50 models were applied for the classification of plant diseases, and these models were merged using the stacking ensemble learning technique to generate a hybrid model. A multi-plant dataset was created using leaf images of four plants: black gram, betel, Malabar spinach, and litchi, which contains nine classes and 44,972 images. Compared to existing individual convolutional neural networks (CNN) models, the proposed hybrid model is more feasible and effective, which acquired 99.20% accuracy. The outcomes and comparison with existing methods represent that the designed method can acquire competitive performance on the multi-plant disease diagnosis tasks

    Performance enhancement of machine learning algorithm for breast cancer diagnosis using hyperparameter optimization

    Get PDF
    Breast cancer is the most fatal women’s cancer, and accurate diagnosis of this disease in the initial phase is crucial to abate death rates worldwide. The demand for computer-aided disease diagnosis technologies in healthcare is growing significantly to assist physicians in ensuring the effectual treatment of critical diseases. The vital purpose of this study is to analyze and evaluate the classification efficiency of several machine learning algorithms with hyperparameter optimization techniques using grid search and random search to reveal an efficient breast cancer diagnosis approach. Choosing the optimal combination of hyperparameters using hyperparameter optimization for machine learning models has a straight influence on the performance of models. According to the findings of several evaluation studies, the k-nearest neighbor is addressed in this study for effective diagnosis of breast cancer, which got a 100.00% recall value with hyperparameters found utilizing grid search. k-nearest neighbor, logistic regression, and multilayer perceptron obtained 99.42% accuracy after utilizing hyperparameter optimization. All machine learning models showed higher efficiency in breast cancer diagnosis with grid search-based hyperparameter optimization except for XGBoost. Therefore, the evaluation outcomes strongly validate the effectiveness and reliability of the proposed technique for breast cancer diagnosis
    corecore