404 research outputs found

    Thermal entanglement of spins in a nonuniform magnetic field

    Full text link
    We study the effect of inhomogeneities in the magnetic field on the thermal entanglement of a two spin system. We show that in the ferromagnetic case a very small inhomogeneity is capable to produce large values of thermal entanglement. This shows that the absence of entanglement in the ferromagnetic Heisenberg system is highly unstable against inhomogeneoity of magnetic fields which is inevitably present in any solid state realization of qubits.Comment: 14 pages, 7 figures, latex, Accepted for publication in Physical Review

    Power Corrections in Charmless Nonleptonic B-Decays: Annihilation is Factorizable and Real

    Get PDF
    We classify LambdaQCD/mb power corrections to nonleptonic B-> M1 M2 decays, where M1 and M2 are charmless non-isosinglet mesons. Using recent developments in soft-collinear effective theory, we prove that the leading contributions to annihilation amplitudes of O[alphas(mb) LambdaQCD/mb] are real and are determined by nonperturbative functions that already occur in the lowest order B-> M1 M2 factorization theorem. A complex nonperturbative parameter from annihilation first appears at O[alphas^2(sqrt{Lambda mb}) LambdaQCD/mb]. ``Chirally enhanced'' contributions are also factorizable and real at lowest order. Thus, incalculable strong phases are suppressed in annihilation amplitudes, unless the alphas(sqrt{Lambda mb}) expansion breaks down. Modeling the distribution functions, we find that (11 +- 9)% and (15 +- 11)% of the absolute value of the measured B-> K- pi+ and B-> K- K0 penguin amplitudes come from annihilation. This is consistent with the expected size of power corrections

    Teleportation via thermally entangled state of a two-qubit Heisenberg XX chain

    Full text link
    We find that quantum teleportation, using the thermally entangled state of two-qubit Heisenberg XX chain as a resource, with fidelity better than any classical communication protocol is possible. However, a thermal state with a greater amount of thermal entanglement does not necessarily yield better fidelity. It depends on the amount of mixing between the separable state and maximally entangled state in the spectra of the two-qubit Heisenberg XX model.Comment: 5 pages, 1 tabl

    Beyond the myth of legality? Framing effects and public reactions to high court decisions in Europe

    Get PDF
    How do people respond to different decision-making processes in high courts? One long-standing view suggests that citizens expect courts to be neutral arbiters of legal controversies. Although the relevance of such “myth of legality” has been challenged, we know very little about the relationship between the portrayals of the motives of courts and justices and public attitudes in civil law countries. We explore this question in a pair of experiments in Norway and Portugal where we isolate the effects of different institutional frames from outcome favorability. We find that while partisan frames are detrimental to fairness perceptions and acceptance of decisions, depictions of judicial decision-making that emphasize policy goals do not adversely affect citizens’ responses in comparison with legalistic frames. The results suggest that, even in civil law systems, preserving the myth of legality may not be a necessary condition to elicit public support for judicial decisions

    Growth restriction in gastroschisis: quantification of its severity and exploration of a placental cause

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastroschisis patients are commonly small for gestational age (SGA, birth weight [BW] < 10<sup>th </sup>centile). However, the extent, symmetry and causes of that growth restriction remain controversial.</p> <p>Methods</p> <p>We compared BW, crown-heel length (LT), occipitofrontal circumference (OFC) and ponderal index (PI) in 179 gastroschisis cases and 895 matched controls by univariate and multiple regression. Fetal ultrasounds (N = 80) were reviewed to determine onset of growth restriction. Placental histology was examined in 31 gastroschisis patients whose placental tissue was available and in 29 controls.</p> <p>Results</p> <p>Gastroschisis cases weighed less than controls (BW = 2400 ± 502 g vs. 2750 ± 532 g, p < 0.001) and their BW frequency curve was shifted to the left, indicating lower BW as a group compared to controls (p < 0.001 by Kolmogorov-Smirnov test). BW differences varied from -148 g at 33 weeks to -616 g at 38 weeks gestation. Intrauterine growth restriction was symmetric with gastroschisis patients having a shorter LT (45.7 ± 3.3 vs. 48.4 ± 2.7 cm, p < 0.001), smaller OFC (31.9 ± 1.9 vs. 32.9 ± 1.6 cm, p < 0.001), but larger ponderal index (2.51 ± 0.37 vs. 2.40 ± 0.16, p < 0.001) compared to controls. Gastroschisis patients had a similar reduction in BW (-312 g, 95% confidence interval [CI] = -367, -258) compared to those with chromosomal abnormalities (-239 g, CI = -292, -187). Growth deficits appeared early in the second trimester and worsened as gestation increased. Placental chorangiosis was more common in gastroschisis patients than controls, even after removing all SGA patients (77% vs. 42%, p = 0.02).</p> <p>Conclusions</p> <p>Marked, relatively symmetric intrauterine growth restriction is an intrinsic part of gastroschisis. It begins early in the second trimester, and is associated with placental chorangiosis.</p

    Signal-background separation and energy reconstruction of gamma rays using pattern spectra and convolutional neural networks for the Small-Sized Telescopes of the Cherenkov Telescope Array

    Full text link
    Imaging Atmospheric Cherenkov Telescopes (IACTs) detect very high-energy gamma rays from ground level by capturing the Cherenkov light of the induced particle showers. Convolutional neural networks (CNNs) can be trained on IACT camera images of such events to differentiate the signal from the background and to reconstruct the energy of the initial gamma ray. Pattern spectra provide a 2-dimensional histogram of the sizes and shapes of features comprising an image and they can be used as an input for a CNN to significantly reduce the computational power required to train it. In this work, we generate pattern spectra from simulated gamma-ray and proton images to train a CNN for signal-background separation and energy reconstruction for the Small-Sized Telescopes (SSTs) of the Cherenkov Telescope Array (CTA). A comparison of our results with a CNN directly trained on CTA images shows that the pattern spectra-based analysis is about a factor of three less computationally expensive but not able to compete with the performance of the CTA images-based analysis. Thus, we conclude that the CTA images must be comprised of additional information not represented by the pattern spectra.Comment: 10 pages, 9 figures, submitted to Nuclear Instruments and Methods in Physics Research - section

    Quantum Entanglement in Fermionic Lattices

    Full text link
    The Fock space of a system of indistinguishable particles is isomorphic (in a non-unique way) to the state-space of a composite i.e., many-modes, quantum system. One can then discuss quantum entanglement for fermionic as well as bosonic systems. We exemplify the use of this notion -central in quantum information - by studying some e.g., Hubbard,lattice fermionic models relevant to condensed matter physics.Comment: 4 Pages LaTeX, 1 TeX Figure. Presentation improved, title changed. To appear in PR

    Global entanglement in multiparticle systems

    Get PDF
    We define a polynomial measure of multiparticle entanglement which is scalable, i.e., which applies to any number of spin-1/2 particles. By evaluating it for three particle states, for eigenstates of the one dimensional Heisenberg antiferromagnet and on quantum error correcting code subspaces, we illustrate the extent to which it quantifies global entanglement. We also apply it to track the evolution of entanglement during a quantum computation.Comment: 9 pages, plain TeX, 1 PostScript figure included with epsf.tex (ignore the under/overfull \vbox error messages); for related work see http://math.ucsd.edu/~dmeyer/research.html or http://www.math.ucsd.edu/~nwallach

    Natural Thermal and Magnetic Entanglement in 1D Heisenberg Model

    Full text link
    We investigate the entanglement between any two spins in a one dimensional Heisenberg chain as a function of temperature and the external magnetic field. We find that the entanglement in an antiferromagnetic chain can be increased by increasing the temperature or the external field. Increasing the field can also create entanglement between otherwise disentangled spins. This entanglement can be confirmed by testing Bell's inequalities involving any two spins in the solid.Comment: 4 pages, 5 figure
    • 

    corecore