5,789 research outputs found
The energies and residues of the nucleon resonances N(1535) and N(1650)
We extract pole positions for the N(1535) and N(1650) resonances using two
different models. The positions are determined from fits to different subsets
of the existing , and data
and found to be 1515(10)--i85(15)MeV and 1660(10)--i65(10)MeV, when the data is
described in terms of two poles. Sensitivity to the choice of fitted data is
explored. The corresponding and residues of these poles
are also extracted.Comment: 9 page
Nucleon-Nucleon Optical Model for Energies to 3 GeV
Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those
derived by quantum inversion, which describe the NN interaction for T-lab below
300$ MeV are extended in their range of application as NN optical models.
Extensions are made in r-space using complex separable potentials definable
with a wide range of form factor options including those of boundary condition
models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et
al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of
the optical model interactions account for loss of flux into direct or resonant
production processes. The optical potential approach is of particular value as
it permits one to visualize fusion, and subsequent fission, of nucleons when
T-lab above 2 GeV. We do so by calculating the scattering wave functions to
specify the energy and radial dependences of flux losses and of probability
distributions. Furthermore, half-off the energy shell t-matrices are presented
as they are readily deduced with this approach. Such t-matrices are required
for studies of few- and many-body nuclear reactions.Comment: Latex, 40 postscript pages including 17 figure
Lessons from dynamic cadaver and invasive bone pin studies: do we know how the foot really moves during gait?
Background: This paper provides a summary of a Keynote lecture delivered at the 2009 Australasian Podiatry Conference. The aim of the paper is to review recent research that has adopted dynamic cadaver and invasive kinematics research approaches to better understand foot
and ankle kinematics during gait. It is not intended to systematically cover all literature related to foot and ankle kinematics (such as research using surface mounted markers). Since the paper is based on a keynote presentation its focuses on the authors own experiences and work in the main, drawing on the work of others where appropriate
Methods: Two approaches to the problem of accessing and measuring the kinematics of individual anatomical structures in the foot have been taken, (i) static and dynamic cadaver models, and (ii) invasive in-vivo research. Cadaver models offer the advantage that there is complete access to all the tissues of the foot, but the cadaver must be manipulated and loaded in a manner which replicates how the foot would have performed when in-vivo. The key value of invasive in-vivo foot kinematics research is the validity of the description of foot kinematics, but the key difficulty is how generalisable this data is to the wider population.
Results: Through these techniques a great deal has been learnt. We better understand the valuable contribution mid and forefoot joints make to foot biomechanics, and how the ankle and subtalar joints can have almost comparable roles. Variation between people in foot kinematics is high and
normal. This includes variation in how specific joints move and how combinations of joints move. The foot continues to demonstrate its flexibility in enabling us to get from A to B via a large number of different kinematic solutions.
Conclusion: Rather than continue to apply a poorly founded model of foot type whose basis is to make all feet meet criteria for the mechanical 'ideal' or 'normal' foot, we should embrace variation between feet and identify it as an opportunity to develop patient-specific clinical models of foot function
Zeroth Law compatibility of non-additive thermodynamics
Non-extensive thermodynamics was criticized among others by stating that the
Zeroth Law cannot be satisfied with non-additive composition rules. In this
paper we determine the general functional form of those non-additive
composition rules which are compatible with the Zeroth Law of thermodynamics.
We find that this general form is additive for the formal logarithms of the
original quantities and the familiar relations of thermodynamics apply to
these. Our result offers a possible solution to the longstanding problem about
equilibrium between extensive and non-extensive systems or systems with
different non-extensivity parameters.Comment: 18 pages, 1 figur
Updated resonance photo-decay amplitudes to 2 GeV
We present the results of an energy-dependent and set of single-energy
partial-wave analyses of single-pion photoproduction data. These analyses
extend from threshold to 2 GeV in the laboratory photon energy, and update our
previous analyses to 1.8 GeV. Photo-decay amplitudes are extracted for the
baryon resonances within this energy range. We consider two photoproduction sum
rules and the contributions of two additional resonance candidates found in our
most recent analysis of elastic scattering data. Comparisons are made
with previous analyses.Comment: Revtex, 26 pages, 3 figures. Postscript figures available from
ftp://clsaid.phys.vt.edu/pub/pr or indirectly from
http://clsaid.phys.vt.edu/~CAPS
Recommended from our members
National Climate Assessment Indicators: Background, Development, and Examples
This paper establishes a rationale for developing a system of indicators for an ongoing national climate assessment process. It lays out a framework for a set of climate-related indicators that have an end-to-end character, e.g. they will provide information on greenhouse gases, variability and change in the climate system, status and trends of important sectors that are known to be sensitive to climate variability, and response strategies. Examples of potential indicators are shown in each category. These are by no means a final set of indicators, because an overall process for selection with participation from important stakeholders has not yet been undertaken. But even this initial set of possibilities reveals both where there is a substantial amount of well-documented information, and where there are important gaps that must be filled by subsequent research
COMPTEL gamma-ray observations of the C4 solar flare on 20 January 2000
The “Pre-SMM” (Vestrand and Miller 1998) picture of gamma-ray line (GRL) flares was that they are relatively rare events. This picture was quickly put in question with the launch of the Solar Maximum Mission (SMM). Over 100 GRL flares were seen with sizes ranging from very large GOES class events (X12) down to moderately small events (M2). It was argued by some (Bai 1986) that this was still consistent with the idea that GRL events are rare. Others, however, argued the opposite (Vestrand 1988; Cliver, Crosby and Dennis 1994), stating that the lower end of this distribution was just a function of SMM’s sensitivity. They stated that the launch of the Compton Gamma-ray Observatory (CGRO) would in fact continue this distribution to show even smaller GRL flares. In response to a BACODINE cosmic gamma-ray burst alert, COMPtonTELescope on the CGRO recorded gamma rays above 1 MeV from the C4 flare at 0221 UT 20 January 2000. This event, though at the limits of COMPTEL’s sensitivity, clearly shows a nuclear line excess above the continuum. Using new spectroscopy techniques we were able to resolve individual lines. This has allowed us to make a basic comparison of this event with the GRL flare distribution from SMM and also compare this flare with a well-observed large GRL flare seen by OSSE
Lessons to be learned from the coherent photoproduction of pseudoscalar mesons
We study the coherent photoproduction of pseudoscalar mesons---particularly
of neutral pions---placing special emphasis on the various sources that put
into question earlier nonrelativistic-impulse-approximation calculations. These
include: final-state interactions, relativistic effects, off-shell ambiguities,
and violations to the impulse approximation. We establish that, while
distortions play an essential role in the modification of the coherent cross
section, the uncertainty in our results due to the various choices of
optical-potential models is relatively small (of at most 30%). By far the
largest uncertainty emerges from the ambiguity in extending the many
on-shell-equivalent representations of the elementary amplitude off the mass
shell. Indeed, relativistic impulse-approximation calculations that include the
same pionic distortions, the same nuclear-structure model, and two sets of
elementary amplitudes that are identical on-shell, lead to variations in the
magnitude of the coherent cross section by up to factors of five. Finally, we
address qualitatively the assumption of locality implicit in most
impulse-approximation treatments, and suggest that the coherent reaction
probes---in addition to the nuclear density---the polarization structure of the
nucleus.Comment: Manuscript is 27 pages long and includes 11 eps figure
Dynamics of Shock Probes in Driven Diffusive Systems
We study the dynamics of shock-tracking probe particles in driven diffusive
systems and also in equilibrium systems. In a driven system, they induce a
diverging timescale that marks the crossover between a passive scalar regime at
early times and a diffusive regime at late times; a scaling form characterises
this crossover. Introduction of probes into an equilibrium system gives rise to
a system-wide density gradient, and the presence of even a single probe can be
felt across the entire system.Comment: Accepted in Journal of Statistical Mechanics: Theory and Experimen
- …