3 research outputs found
Indigenous cattle of Sri Lanka: Genetic and phylogeographic relationship with Zebu of Indus Valley and South Indian origin.
The present study reports the population structure, genetic admixture and phylogeography of cattle breeds of Sri Lanka viz. Batu Harak, Thawalam and White cattle. Moderately high level of genetic diversity was observed in all the three Sri Lankan zebu cattle breeds. Estimates of inbreeding for Thawalam and White cattle breeds were relatively high with 6.1% and 7.2% respectively. Genetic differentiation of Sri Lankan Zebu (Batu Harak and White cattle) was lowest with Red Sindhi among Indus Valley Zebu while it was lowest with Hallikar among the South Indian cattle. Global F statistics showed 6.5% differences among all the investigated Zebu cattle breeds and 1.9% differences among Sri Lankan Zebu breeds. The Sri Lankan Zebu cattle breeds showed strong genetic relationships with Hallikar cattle, an ancient breed considered to be ancestor for most of the Mysore type draught cattle breeds of South India. Genetic admixture analysis revealed high levels of breed purity in Lanka White cattle with >97% Zebu ancestry. However, significant taurine admixture was observed in Batu Harak and Thawalam cattle. Two major Zebu haplogroups, I1 and I2 were observed in Sri Lankan Zebu with the former predominating the later in all the three breeds. A total of 112 haplotypes were observed in the studied breeds, of which 50 haplotypes were found in Sri Lankan Zebu cattle. Mismatch analysis revealed unimodal distribution in all the three breeds indicating population expansion. The sum of squared deviations (SSD) and raggedness index were non-significant in both the lineages of all the three breeds except for I1 lineage of Thawalam cattle (P0.05) and White cattle (P>0.05) indicating an excess of low frequency polymorphisms and demographic expansion. Genetic dilution of native Zebu cattle germplasm observed in the study is a cause for concern. Hence, it is imperative that national breeding organizations consider establishing conservation units for the three native cattle breeds to maintain breed purity and initiate genetic improvement programs
Indigenous cattle of Sri Lanka: Genetic and phylogeographic relationship with Zebu of Indus Valley and South Indian origin
The present study reports the population structure, genetic admixture and phylogeography of cattle breeds of Sri Lanka viz. Batu Harak, Thawalam and White cattle. Moderately high level of genetic diversity was observed in all the three Sri Lankan zebu cattle breeds. Estimates of inbreeding for Thawalam and White cattle breeds were relatively high with 6.1% and 7.2% respectively. Genetic differentiation of Sri Lankan Zebu (Batu Harak and White cattle) was lowest with Red Sindhi among Indus Valley Zebu while it was lowest with Hallikar among the South Indian cattle. Global F statistics showed 6.5% differences among all the investigated Zebu cattle breeds and 1.9% differences among Sri Lankan Zebu breeds. The Sri Lankan Zebu cattle breeds showed strong genetic relationships with Hallikar cattle, an ancient breed considered to be ancestor for most of the Mysore type draught cattle breeds of South India. Genetic admixture analysis revealed high levels of breed purity in Lanka White cattle with >97% Zebu ancestry. However, significant taurine admixture was observed in Batu Harak and Thawalam cattle. Two major Zebu haplogroups, I1 and I2 were observed in Sri Lankan Zebu with the former predominating the later in all the three breeds. A total of 112 haplotypes were observed in the studied breeds, of which 50 haplotypes were found in Sri Lankan Zebu cattle. Mismatch analysis revealed unimodal distribution in all the three breeds indicating population expansion. The sum of squared deviations (SSD) and raggedness index were non-significant in both the lineages of all the three breeds except for I1 lineage of Thawalam cattle (P0.05) and White cattle (P>0.05) indicating an excess of low frequency polymorphisms and demographic expansion. Genetic dilution of native Zebu cattle germplasm observed in the study is a cause for concern. Hence, it is imperative that national breeding organizations consider establishing conservation units for the three native cattle breeds to maintain breed purity and initiate genetic improvement programs
Local ancestry to identify selection in response to trypanosome infection in Baoulé x Zebu crossbred cattle in Burkina Faso
The genomes of crossbred (admixed) individuals are a mosaic of ancestral haplotypes formed by recombination in each generation. The proportion of these ancestral haplotypes in certain genomic regions can be responsible for either susceptibility or tolerance against pathogens, and for performances in production traits. Using a medium-density genomic marker panel from the Illumina Bovine SNP50 BeadChip, we estimated individual admixture proportions for Baoulé x Zebu crossbred cattle in Burkina Faso, which were tested for trypanosome infection by direct ELISA from blood samples. Furthermore, we calculated local ancestry deviation from average for each SNP across 29 autosomes to identify potential regions under selection in the trypanotolerant Baoulé cattle and their crossbreds. We identified significant deviation from the local average ancestry (above 5 and 10% genome-wide thresholds) on chromosomes 8 and 19 in the positive animals, while the negative ones showed higher deviation on chromosomes 6, 19, 21, and 22. Some candidate genes on chromosome 6 (PDGFRA) and chromosome 19 (CDC6) have been found associated to trypanotolerance in West African taurines. Screening for FST outliers in trypanosome positive/negative animals we detected seven variants putatively under selection. Finally, we identified a minimum set of highly ancestry informative markers for routine admixture testing. The results of this study contribute to a better understanding of the genetic basis of trypanotolerance in Baoulé cattle and their crossbreeds. Furthermore, we provide a small informative marker set to monitor admixture in this valuable indigenous breed. As such, our results are important for conserving the genetic uniqueness and trypanotolerance of Baoulé cattle, as well as for the improvement of Baoulé and Zebu crossbreds in specific community-based breeding programs