19 research outputs found

    In ovo administration of a phage cocktail partially prevents colibacillosis in chicks

    No full text
    ABSTRACT: Avian pathogenic Escherichia coli (APEC) causes colibacillosis, the main bacterial disease in poultry leading to significant economic losses worldwide. Antibiotic treatments favor the emergence of multidrug-resistant bacteria, and preventive measures are insufficient to control the disease. There is increasing interest in using the potential of bacteriophages, not only for phage therapy but also for prevention and biocontrol. This study aimed to evaluate the efficacy of a phage cocktail administered in ovo to prevent avian colibacillosis in chicks. When 4 different phages (REC, ESCO3, ESCO47, and ESCO58), stable under avian physiological conditions, were combined and inoculated at 17 embryogenic days (ED), they were transmitted to the newly hatched chicks. In a second trial, the 4-phage cocktail was inoculated into the allantoic fluid at ED16 and after hatch 1-day-old chicks were challenged with the O2 APEC strain BEN4358 inoculated subcutaneously. Two phages (REC and ESCO3) were still detected in the ceca of surviving chicks at the end of the experiment (7-days postinfection). Chicks that received the phages in ovo did not develop colibacillosis lesions and showed a significant decrease in intestinal BEN4358 load (8.00 × 107 CFU/g) compared to the challenged chicks (4.52 × 108 CFU/g). The majority of the reisolated bacteria from the ceca of surviving chicks had developed full resistance to ESCO3 phage, and only 3 were resistant to REC phage. The partially or complete resistance of REC phage induced a considerable cost to bacterial virulence. Here, we showed that phages inoculated in ovo can partially prevent colibacillosis in 1-wk-old chicks. The reduction in the APEC load in the gut and the decreased virulence of some resistant isolates could also contribute to control the disease

    Two-Photon Initiating Efficiency of a Ditopic Alkoxynitrostilbene Reacting through a Self-Regenerative Mechanism

    Get PDF
    International audienceThe photophysical properties and the photoinitiating reactivity of a ditopic alkoxynitrostilbene were compared to those of its single branch chromophore used as a reference. Whereas a trivial additive effect is observed when considering the one-and two-photon absorption properties, a clear and very significant amplification has been highlighted for the photoreactivity of this free radical photoinitiator which was used as a hydrogen abstractor in presence of an aliphatic amine co-reactant. We indeed demonstrate that the proximity of two nitroaromatics moieties within the same molecular architecture gives rise to an original cycling mechanism based on a stepwise photo triggering of each photoredox center followed by a subsequent regenerative process. The combination of a high two-photon absorption cross-section (delta 780nm ≈ 330 GM) with a strong enhancement in photoreactivity makes this nitrostilbene bichromophore a very suitable candidate for two-photon polymerization applications
    corecore