18 research outputs found

    Novel up-conversion concentrating photovoltaic concepts

    Get PDF
    This thesis summarises a set of experiments towards the integration of concentrating optics into up-conversion photovoltaics. Up-conversion in rare earths has been investigated here. This optical process is non-linear therefore a high solar irradiance is required. High solar irradiance is achievable by solar concentration. Two concentrating approaches were investigated in this thesis: The first approach involved the concentration of the incident solar irradiance into optical fibres. An optical system with spherical lenses and dielectric tapers was designed accordingly. A solar concentration of 2000 suns was realised at the end of a single optical fibre. In addition to the total solar concentration, the spectral dependence was characterised to account for the effect of chromatic aberrations. Then, the solar concentration could be transferred into rare earth-doped fibres. For this reason, a series of experiments on double-clad erbium-doped silicate fibres was carried out. Although up-conversion in this type of fibre is minimised, the measured power dependence agrees with up-conversion via excited state absorption. In the second approach, concentrating optics were integrated in up-conversion solar cells. The role of the optics was to couple the photons transmitted by the solar cell to the rare earth up-converter. Therefore, imaging and non-imaging optics were investigated, with the latter exhibiting ideal coupling characteristics; concentration and high transmission of the incident irradiance, but also efficient collection of the up-converted emission. Out of the non-imaging optics, the dielectric compound parabolic concentrator fulfilled these characteristics, indicating its novel use in up-conversion solar cells. Two erbium-doped up-converters were utilised in this approach, beta-phase hexagonal sodium yttrium tetrafluoride (β-NaYF4:25%Er3+) and barium diyttrium octafluoride (BaY2F8:30%Er3+). The latter performed best, with an external quantum efficiency (EQE) of 2.07% under 1493 nm illumination, while the former exhibited an EQE of 1.80% under 1523 nm illumination both at an irradiance of 0.02 W/cm2. This corresponds to a relative conversion efficiency of 0.199% and 0.163% under sub-band-gap illumination, respectively, for a solar cell of 17.6% under standard AM1.5G conditions. These values are among the highest in literature for up-conversion solar cells and show the potential of the concentrating concept that can be important for future directions of photovoltaics.Engineering and Physical Sciences Research Council (EPSRC)European Community's Seventh Framework Program (FP7/2007-2013

    Enhancement of Upconversion for Photovoltaics with β-NaYF4:Er3+ and Concentrating Integrated Optics

    Get PDF
    Renewable Energy and the Environment of the OSA Optics and Photonics Congress 2013, Tucson, USA, 3-6 November 2013The internal photoluminescence quantum yield of β-NaYF4:Er3+ is determined under broadband excitation and a photovoltaic-upconverter system with concentrating integrated optics is proposed to enhance the near-infrared response of silicon solar cells

    Ultra-broadband near-infrared upconversion for solar energy harvesting

    Get PDF
    Upconversion – the absorption of two or more photons resulting in radiative emission at a higher energy than the excitation – has the potential to enhance the efficiency of solar energy harvesting technologies, most notably photovoltaics. However, the required ultra-high light intensities and the narrow absorption bands of lanthanide ions limit efficient solar utilisation. In this paper, we report results from exciting upconverters with concentrated sunlight at flux densities up to 2300 suns, where the radiation is restricted to photon energies below the bandgap of silicon (corresponding to a wavelength λ = 1200 nm). Upconversion to λ = 980 nm is achieved by using hexagonal erbium-doped sodium yttrium fluoride (β-NaYF4: Er3+) in a fluoropolymer matrix. Upconversion has a nonlinear relation with irradiance, therefore at a high irradiance a threshold occurs where the process becomes linear. For β-NaYF4:25%Er3+, we find a two-photon threshold under concentrated sunlight at 320 suns. Notably, this threshold is lower than under corresponding laser excitation and can be related to all resonantly excited Er3+ ion levels and excited stated absorption. These results highlight a pathway that utilises a far broader portion of the solar spectrum for photovoltaics

    Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration

    No full text
    In this paper, the technological advances in concentrating solar power are reviewed. A comprehensive system approach within this scope is attempted to include advances of highly specialized developments in all aspects of the technology. Advances in geometric optics for enhancement in solar concentration and temperature are reviewed along with receiver configurations for efficient heat transfer. Advances in sensible and latent heat storage materials, as well as development in thermochemical processes, are also reviewed in conjunction with efficient system integration as well as alternative energy generation technologies. This comprehensive approach aims in highlighting promising concentrating solar power components for further development and wider solar energy utilization

    Energy Performance of Buildings with Thermochromic Windows in Mediterranean Climates

    No full text
    This article presents comparative results on the energy performance of buildings in the Mediterranean. Many buildings in the Mediterranean exhibit low energy performance ranking. Thermochromic windows are able to improve the energy consumption by controlling the gains from sunlight. In this article, reference buildings in 15 cities around the Mediterranean are investigated. In this work, a dynamic building information modeling approach is utilized, relying on three-dimensional geometry of office buildings. Calculations of the energy demand based on computational simulations of each location were performed, for the estimation of heating and cooling loads. The presented study highlighted the need for high-resolution data for detailed simulation of thermochromic windows in buildings of Mediterranean cities. Temperature is one of the main climate parameters that affect the energy demand of buildings. However, the climate of Mediterranean cities nearby the sea may affect the energy demand. This was more pronounced in cities with arid Mediterranean climate with increased demand in air-conditioning during the summer months. On the other hand, cities with semi-arid Mediterranean climate exhibited relatively increased heating demand. With this parametric approach, the article indicates the energy saving potential of the proposed measures for each Mediterranean city. Finally, these measures can be complemented by overall building passive and active systems for higher energy reductions and increased comfort

    Criteria-Based Model of Hybrid Photovoltaic–Wind Energy System with Micro-Compressed Air Energy Storage

    No full text
    Utilization of solar and wind energy is increasing worldwide. Photovoltaic and wind energy systems are among the major contributing tec4hnologies to the generation capacity from renewable energy sources; however, the generation often does not temporally match the demand. Micro-compressed air energy storage (micro-CAES) is among the low-cost storage options, and its coupling with the power generated by photovoltaics and wind turbines can provide demand shifting, modeled by efficient algorithms. A model based on criteria that are preset according to the demand is presented. The model decides on the distribution of the generated energy, depending on the state of the energy storage and the preset criteria of each storage technology. The satisfaction of the demand by the energy production and micro-CAES is compared to that of storage batteries. The demand originates in a case study of a household and optimal configurations of photovoltaics and wind turbines, and the storage capacities and costs are compared. An optimal configuration of 30 photovoltaic panels and two wind turbines was found for micro-CAES. The annual stored energy of micro-CAES was 114 kWh higher than that of the system with batteries

    Combined Operation of Wind-Pumped Hydro Storage Plant with a Concentrating Solar Power Plant for Insular Systems: A Case Study for the Island of Rhodes

    No full text
    Insular power systems are a special case of infrastructure for power production due to their particular land morphology with extensive hills and ridges. For a higher renewable energy share in the power production, a dedicated design according to local constraints is required. The high wind and solar resources of such cases can be utilized with offshore wind turbines and concentrating solar power, respectively. In addition, pumped-hydro storage is a mature and suitable technology for such terrain. A case study is presented in the island of Rhodes to obtain a renewable energy penetration higher than 70%. The technical and financial requirements for this implementation support the design of this system, while the introduction of concentrating solar power enables significant energy savings during the periods of peak demand of the island. An annual RES penetration close to 80% can be achieved with the combined operation of both plants. The economic viability of the required investment can be ensured with selling prices of the produced electricity in the range of 0.20 EUR/kWh

    Combined Operation of Wind-Pumped Hydro Storage Plant with a Concentrating Solar Power Plant for Insular Systems: A Case Study for the Island of Rhodes

    No full text
    Insular power systems are a special case of infrastructure for power production due to their particular land morphology with extensive hills and ridges. For a higher renewable energy share in the power production, a dedicated design according to local constraints is required. The high wind and solar resources of such cases can be utilized with offshore wind turbines and concentrating solar power, respectively. In addition, pumped-hydro storage is a mature and suitable technology for such terrain. A case study is presented in the island of Rhodes to obtain a renewable energy penetration higher than 70%. The technical and financial requirements for this implementation support the design of this system, while the introduction of concentrating solar power enables significant energy savings during the periods of peak demand of the island. An annual RES penetration close to 80% can be achieved with the combined operation of both plants. The economic viability of the required investment can be ensured with selling prices of the produced electricity in the range of 0.20 EUR/kWh
    corecore