487 research outputs found

    A Joint Model Of X-ray And Infrared Backgrounds. II. Compton-Thick AGN Abundance

    Full text link
    We estimate the abundance of Compton-thick (CT) active galactic nuclei (AGN) based on our joint model of X-ray and infrared backgrounds. At L_{rest 2-10 keV} > 10^42 erg/s, the CT AGN density predicted by our model is a few 10^-4 Mpc^-3 from z=0 up to z=3. CT AGN with higher luminosity cuts (> 10^43, 10^44 & 10^45 erg/s) peak at higher z and show a rapid increase in the number density from z=0 to z~2-3. The CT to all AGN ratio appears to be low (2-5%) at f_{2-10keV} > 10^-15 erg/s/cm^2 but rises rapidly toward fainter flux levels. The CT AGN account for ~ 38% of the total accreted SMBH mass and contribute ~ 25% of the cosmic X-ray background spectrum at 20 keV. Our model predicts that the majority (90%) of luminous and bright CT AGN (L_{rest 2-10 keV} > 10^44 erg/s or f_{2-10keV} > 10^-15 erg/s/cm^2) have detectable hot dust 5-10 um emission which we associate with a dusty torus. The fraction drops for fainter objects, to around 30% at L_{rest 2-10 keV} > 10^42 erg/s or f_{2-10keV} > 10^-17 erg/s/cm^2. Our model confirms that heavily-obscured AGN (N_HI > 10^23 cm^-2) can be separated from unobscured and mildly-obscured ones (N_HI < 10^23 cm^-2) in the plane of observed-frame X-ray hardness vs. mid-IR/X-ray ratio.Comment: 8 pages, 9 figures, accepted for Ap

    The nature of the emission-line nebulae in powerful far-infrared galaxies

    Get PDF
    The authors discuss their program of narrow-band (H alpha + (NII)) imaging of a sample of 30 powerful far-infrared galaxies (FIRG's) chosen to have far-infrared spectral energy distributions similar to the prototype FIRG's Arp 220, NGC 3690, NGC 6240, and M82. The emission-line nebulae of these IR color-selected sample (ICSS) galaxies as a class are both impressively large (mean half light radius, r approx. 1.3 Kpc, and mean diameter, D approx. 16 Kpc) and luminous (L sub TOT approx. 10(exp 8) solar lumninosity; uncorrected for internal extinction). The mean total H alpha + (NII) luminosity of the FIRG's is comparable to that found for pairs of optically selected interacting galaxies (Bushouse, Lamb, and Werner 1988), but is a factor of approx. 5 greater than that of isolated spirals (Kennicutt and Kent 1983). Only approx. 25 percent of the nearby (z approx. less than 0.10) FIRG's have morphologies suggesting that large HII-regions contribute significantly to their emission-line appearance. The broad-band morphologies of our IR color-selected galaxies fall into three major categories. Nearly 75 percent are single galaxy systems, with the remaining FIRG's being either multiple nuclei systems, or members of interacting pairs. Since the authors saw few (10 percent) currently interacting FIRG's, yet many (80 percent) with highly distorted continuum morphologies, their IR color criteria may be preferentially selecting galaxies that have undergone highly inelastic, rapidly merging interactions

    Galactic Scale Feedback Observed in the 3C 298 Quasar Host Galaxy

    Get PDF
    We present high angular resolution multi-wavelength data of the 3C 298 radio-loud quasar host galaxy (z=1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph with adaptive optics, Atacama Large Millimeter/submillimeter Array (ALMA), Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ\beta, [OIII], Hα\alpha, [NII], and [SII], as well as molecular lines CO (J=3-2) and (J=5-4). Along the path of 3C 298's relativistic jets we detect conical outflows of ionized gas with velocities up to 1700 km s1^{-1} and outflow rate of 450-1500 M_\odotyr1^{-1}. Near the spatial center of the conical outflow, CO (J=3-2) emission shows a molecular gas disc with a total molecular mass (MH2\rm M_{H_{2}}) of 6.6±0.36×109\pm0.36\times10^{9}M_{\odot}. On the molecular disc's blueshifted side we observe a molecular outflow with a rate of 2300 M_\odotyr1^{-1} and depletion time scale of 3 Myr. We detect no narrow Hα\alpha emission in the outflow regions, suggesting a limit on star formation of 0.3 M_\odotyr1^{-1}kpc2^{-2}. Quasar driven winds are evacuating the molecular gas reservoir thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is 109.379.5610^{9.37-9.56}M_{\odot} and we determine a dynamical bulge mass of 1-1.7×1010R1.6kpc\rm\times10^{10}\frac{R}{1.6 kpc} M_{\odot}. The bulge mass of 3C 298 resides 2-2.5 orders of magnitude below the expected value from the local MbulgeMBH\rm_{bulge}-M_{BH} relationship. A second galactic disc observed in nebular emission is offset from the quasar by 9 kpc suggesting the system is an intermediate stage merger. These results show that galactic scale negative feedback is occurring early in the merger phase of 3C 298, well before the coalescence of the galactic nuclei and assembly on the local relationship.Comment: 23 pages, 11 figures, 4 tables, Accepted for publication in the Astrophysical Journa

    Providing stringent star formation rate limits of z\sim2 QSO host galaxies at high angular resolution

    Get PDF
    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z=2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini-North Observatories using OSIRIS and NIFS coupled with the LGS-AO systems. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z=2.15. We demonstrate that the combination of AO and IFS provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a PSF from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy. We detect Hα\alpha and [NII] for two sources, SDSS J1029+6510 and SDSS J0925+06 that have both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα\alpha is from star formation, we infer a star formation rate for SDSS J1029+6510 of 78.4 M_\odotyr1^{-1} originating from a compact region that is kinematically offset by 290 - 350 km/s. For SDSS J0925+06 we infer a star formation rate of 29 M_\odotyr1^{-1} distributed over three clumps that are spatially offset by \sim 7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc distance from the QSO that the un-reddened star formation limit is << 0.3 M_\odotyr1^{-1}kpc2^{-2}. If we assume a typical extinction values for z=2 type-1 QSOs, the dereddened star formation rate for our null detections would be << 0.6 M_\odotyr1^{-1}kpc2^{-2}. These IFS observations indicate that if star formation is present in the host it would have to occur diffusely with significant extinction and not in compact, clumpy regions.Comment: 17 pages, 7 figures, 7 tables, Accepted to Ap

    The Weak Carbon Monoxide Emission In An Extremely Metal Poor Galaxy, Sextans A

    Get PDF
    Carbon monoxide (CO) is one of the primary coolants of gas and an easily accessible tracer of molecular gas in spiral galaxies but it is unclear if CO plays a similar role in metal poor dwarfs. We carried out a deep observation with IRAM 30 m to search for CO emission by targeting the brightest far-IR peak in a nearby extremely metal poor galaxy, Sextans A, with 7% Solar metallicity. A weak CO J=1-0 emission is seen, which is already faint enough to place a strong constraint on the conversion factor (a_CO) from the CO luminosity to the molecular gas mass that is derived from the spatially resolved dust mass map. The a_CO is at least seven hundred times the Milky Way value. This indicates that CO emission is exceedingly weak in extremely metal poor galaxies, challenging its role as a coolant in these galaxies.Comment: 4 pages, 1 table, 4 figures. ApJL in pres

    Inefficient Star Formation In Extremely Metal Poor Galaxies

    Get PDF
    The first galaxies contain stars born out of gas with little or no metals. The lack of metals is expected to inhibit efficient gas cooling and star formation but this effect has yet to be observed in galaxies with oxygen abundance relative to hydrogen below a tenth of that of the Sun. Extremely metal poor nearby galaxies may be our best local laboratories for studying in detail the conditions that prevailed in low metallicity galaxies at early epochs. Carbon Monoxide (CO) emission is unreliable as tracers of gas at low metallicities, and while dust has been used to trace gas in low-metallicity galaxies, low-spatial resolution in the far-infrared has typically led to large uncertainties. Here we report spatially-resolved infrared observations of two galaxies with oxygen abundances below 10 per cent solar, and show that stars form very inefficiently in seven star-forming clumps of these galaxies. The star formation efficiencies are more than ten times lower than found in normal, metal rich galaxies today, suggesting that star formation may have been very inefficient in the early Universe.Comment: Author's version (10 pages, 4 figures). Published in Natur

    Near Infrared Imaging of the Hubble Deep Field with The Keck Telescope

    Get PDF
    Two deep K-band (2.2μm2.2 \mu m) images, with point-source detection limits of K=25.2K=25.2 mag (one sigma), taken with the Keck Telescope in subfields of the Hubble Deep Field, are presented and analyzed. A sample of objects to K=24 mag is constructed and V606I814V_{606}-I_{814} and I814KI_{814}-K colors are measured. By stacking visually selected objects, mean I814KI_{814}-K colors can be measured to very faint levels; the mean I814KI_{814}-K color is constant with apparent magnitude down to V606=28V_{606}=28 mag.Comment: Replaced with slightly revised source positions and corrected V-I magnitudes (which were incorrect in the Tables and Figure 5). 18 pages. The data are publicly available at http://www.cco.caltech.edu/~btsoifer/hdf.html along with a high-resolution version of Fig.

    The InfraRed Imaging Spectrograph (IRIS) for TMT: latest science cases and simulations

    Get PDF
    The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline
    corecore