9,768 research outputs found

    Electromagnetic and corpuscular emission from the solar flare of 1991 June 15: Continuous acceleraton of relativistic particles

    Get PDF
    Data on X-,γ-ray, optical and radio emission from the 1991 June 15 solar flare are considered. We have calculated the spectrum of protons that producesγ-rays during the gradual phase of the flare. The primary proton spectrum can be described as a Bessel-function-type up to 0.8 GeV and a power law with the spectral index ≈3 from 0.8 up to 10 GeV or above. We have also analyzed data on energetic particles near the Earth. Their spectrum differed from that of primary protons producingγ-ray line emission. In the gradual phase of the flare additional pulses of energy release occurred and the time profiles of cm-radio emission andγ-rays in the 0.8–10 MeV energy band and above 50 MeV coincided. A continuous and simultaneous stochastic acceleration of the protons and relativistic electrons at the gradual phase of the flare is considered as a natural explanation of the data

    Decisive Search for a Diquark-Antidiquark Meson with Hidden Strangeness

    Full text link
    Diquark-antidiquark states are expected to exist as a natural complement of mesons and baryons. Although they were predicted long ago, and some candidates were found experimentally, none has, as yet, been reliably identified. We suggest that the search for the so-called C(1480)C(1480)-meson in reactions such as photoproduction γNϕπN\gamma N\rightarrow\phi\pi N and KNϕπΛK N \rightarrow \phi \pi \Lambda should provide a decisive way to settle this issue. Estimates of the cross sections are given using present experimental information on the C-meson and assuming its diquark-antidiquark structure. Sizable cross sections are predicted (of the order of 0.1 μ\mub for photoproduction and of the order of 0.1 mb for KNKN at the maximum with an insignificant background). Failure to find this kind of signal would imply that the C-meson is {\it not} a diquark-antidiquark state.Comment: 9 pages in LATex + 6 figs. (available from authers upon request), IUHET-269/9

    Mercury Orbiter: Report of the Science Working Team

    Get PDF
    The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems

    Homogenization of weakly coupled systems of Hamilton--Jacobi equations with fast switching rates

    Full text link
    We consider homogenization for weakly coupled systems of Hamilton--Jacobi equations with fast switching rates. The fast switching rate terms force the solutions converge to the same limit, which is a solution of the effective equation. We discover the appearance of the initial layers, which appear naturally when we consider the systems with different initial data and analyze them rigorously. In particular, we obtain matched asymptotic solutions of the systems and rate of convergence. We also investigate properties of the effective Hamiltonian of weakly coupled systems and show some examples which do not appear in the context of single equations.Comment: final version, to appear in Arch. Ration. Mech. Ana

    Rapid Oscillations in Cataclysmic Variables. XVI. DW Cancri

    Full text link
    We report photometry and spectroscopy of the novalike variable DW Cancri. The spectra show the usual broad H and He emission lines, with an excitation and continuum slope characteristic of a moderately high accretion rate. A radial-velocity search yields strong detections at two periods, 86.1015(3) min and 38.58377(6) min. We interpret these as respectively the orbital period P_orb of the binary, and the spin period P_spin of a magnetic white dwarf. The light curve also shows the spin period, plus an additional strong signal at 69.9133(10) min, which coincides with the difference frequency 1/P_spin-1/P_orb. These periods are stable over the 1 year baseline of measurement. This triply-periodic structure mimics the behavior of several well-credentialed members of the "DQ Herculis" (intermediate polar) class of cataclysmic variables. DQ Her membership is also suggested by the mysteriously strong sideband signal (at nu_spin-nu_orb), attesting to a strong pulsed flux at X-ray/EUV/UV wavelengths. DW Cnc is a new member of this class, and would be an excellent target for extended observation at these wavelengths.Comment: PDF, 28 pages, 6 tables, 9 figures; accepted, in press, to appear June 2004, PASP; more info at http://cba.phys.columbia.edu

    Is copyright blind to the visual?

    Get PDF
    This article argues that, with respect to the copyright protection of works of visual art, the general uneasiness that has always pervaded the relationship between copyright law and concepts of creativity produces three anomalous results. One of these is that copyright lacks much in the way of a central concept of 'visual art' and, to the extent that it embraces any concept of the 'visual', it is rooted in the rhetorical discourse of the Renaissance. This means that copyright is poorly equipped to deal with modern developments in the visual arts. Secondly, the pervasive effect of rhetorical discourse appears to have made it particularly difficult for copyright law to strike a meaningful balance between protecting creativity and permitting its use in further creative works. Thirdly, just when rhetorical discourse might have been useful in identifying the significance and materiality of the unique one-off work of visual art, copyright law chooses to ignore its implications

    Singular solutions of fully nonlinear elliptic equations and applications

    Full text link
    We study the properties of solutions of fully nonlinear, positively homogeneous elliptic equations near boundary points of Lipschitz domains at which the solution may be singular. We show that these equations have two positive solutions in each cone of Rn\mathbb{R}^n, and the solutions are unique in an appropriate sense. We introduce a new method for analyzing the behavior of solutions near certain Lipschitz boundary points, which permits us to classify isolated boundary singularities of solutions which are bounded from either above or below. We also obtain a sharp Phragm\'en-Lindel\"of result as well as a principle of positive singularities in certain Lipschitz domains.Comment: 41 pages, 2 figure

    Proton polarizability effect in the Lamb shift of the hydrogen atom

    Full text link
    The proton polarizability correction to the Lamb shift of electronic and muonic hydrogen is calculated on the basis of isobar model and experimental data on the structure functions of deep inelastic lepton-nucleon scattering. The contributions of the Born terms, vector-meson exchanges and nucleon resonances are taken into account in the construction of the photoabsorption cross sections for transversely and longitudinally polarized virtual photons sigma_{T,L}.Comment: 11 pages, 3 figure

    Measurement of the Electric and Magnetic Polarizabilities of the Proton

    Full text link
    The Compton scattering cross section on the proton has been measured at laboratory angles of 90^\circ and 135^\circ using tagged photons in the energy range 70--100 MeV and simultaneously using untagged photons in the range 100--148~MeV. With the aid of dispersion relations, these cross sections were used to extract the electric and magnetic polarizabilities, αˉ\bar{\alpha} and βˉ\bar{\beta} respectively, of the proton. We find αˉ+βˉ=(15.0±2.9±1.1±0.4)×104fm3,\bar{\alpha}+\bar{\beta} = ( 15.0 \pm 2.9 \pm 1.1 \pm 0.4 ) \times 10^{-4} \: {\rm fm}^3, in agreement with a model-independent dispersion sum rule, and αˉβˉ=(10.8±1.1±1.4±1.0)×104fm3,\bar{\alpha}-\bar{\beta} = ( 10.8 \pm 1.1 \pm 1.4 \pm 1.0 ) \times 10^{-4} \: {\rm fm}^3, where the errors shown are statistical, systematic, and model-dependent, respectively. A comparison with previous experiments is given and global values for the polarizabilities are extracted.Comment: 35 pages, 11 PostScript figures, uses RevTex 3.
    corecore