1,168 research outputs found

    DeepAngle: Fast calculation of contact angles in tomography images using deep learning

    Full text link
    DeepAngle is a machine learning-based method to determine the contact angles of different phases in the tomography images of porous materials. Measurement of angles in 3--D needs to be done within the surface perpendicular to the angle planes, and it could become inaccurate when dealing with the discretized space of the image voxels. A computationally intensive solution is to correlate and vectorize all surfaces using an adaptable grid, and then measure the angles within the desired planes. On the contrary, the present study provides a rapid and low-cost technique powered by deep learning to estimate the interfacial angles directly from images. DeepAngle is tested on both synthetic and realistic images against the direct measurement technique and found to improve the r-squared by 5 to 16% while lowering the computational cost 20 times. This rapid method is especially applicable for processing large tomography data and time-resolved images, which is computationally intensive. The developed code and the dataset are available at an open repository on GitHub (https://www.github.com/ArashRabbani/DeepAngle)

    Using synchrotron-based X-Ray microtomography and functional contrast agents in environmental applications

    Get PDF
    Despite very rapid development in commercial X-ray tomography technology, synchrotron-based tomography facilities still have a number of advantages over conventional systems. The high photon flux inherent of synchrotron radiation sources allows for (i) high resolution to micro- or nanometer scales depending on the individual beamline, (ii) rapid acquisition times that allow for collection of sufficient data for statistically significant results in a short amount of time as well as prevention of temporal changes that would take place during longer scan times, and (iii) optimal implementation of contrast agents that allow us to resolve features that would not be decipherable in scans obtained with a polychromatic radiation source. This chapter highlights recent advances in capabilities at synchrotron sources, as well as implementation of synchrotron-based computed microtomography (CMT) to two topics of interest to researchers in the soil science, hydrology, and environmental engineering fields, namely multiphase flow in porous media and characterization of biofilm architecture in porous media. In both examples, we make use of contrast agents and photoelectric edge-specic scanning (single- or dual-energy type), in combination with advanced image processing techniques

    GRB 021004: A Possible Shell Nebula around a Wolf-Rayet Star Gamma-Ray Burst Progenitor

    Get PDF
    The rapid localization of GRB 021004 by the HETE-2 satellite allowed nearly continuous monitoring of its early optical afterglow decay, as well as high-quality optical spectra that determined a redshift of z3=2.328 for its host galaxy, an active starburst galaxy with strong Lyman-alpha emission and several absorption lines. Spectral observations show multiple absorbers at z3A=2.323, z3B= 2.317, and z3C= 2.293 blueshifted by 450, 990, and 3,155 km/s respectively relative to the host galaxy Lyman-alpha emission. We argue that these correspond to a fragmented shell nebula that has been radiatively accelerated by the gamma-ray burst (GRB) afterglow at a distance greater than 0.3 pc from a Wolf-Rayet star progenitor. The chemical abundance ratios indicate that the nebula is overabundant in carbon and silicon. The high level of carbon and silicon is consistent with a swept-up shell nebula gradually enriched by a WCL progenitor wind over the lifetime of the nebula prior to the GRB onset. The detection of statistically significant fluctuations and color changes about the jet-like optical decay further supports this interpretation since fluctuations must be present at some level due to inhomogeneities in a clumpy stellar wind medium or if the progenitor has undergone massive ejection prior to the GRB onset. This evidence suggests that the mass-loss process in a Wolf-Rayet star might lead naturally to an iron-core collapse with sufficient angular momentum that could serve as a suitable GRB progenitor.Comment: Replaced with version accepted by ApJ; 40 pages, 9 figure

    Effective permeability of an immiscible fluid in porous media determined from its geometric state

    Full text link
    Based on the phenomenological extension of Darcy's law, two-fluid flow is dependent on a relative permeability function of saturation only that is process/path dependent with an underlying dependency on pore structure. For applications, fuel cells to underground CO2CO_2 storage, it is imperative to determine the effective phase permeability relationships where the traditional approach is based on the inverse modelling of time-consuming experiments. The underlying reason is that the fundamental upscaling step from pore to Darcy scale, which links the pore structure of the porous medium to the continuum hydraulic conductivities, is not solved. Herein, we develop an Artificial Neural Network (ANN) that relies on fundamental geometrical relationships to determine the mechanical energy dissipation during creeping immiscible two-fluid flow. The developed ANN is based on a prescribed set of state variables based on physical insights that predicts the effective permeability of 4,500 unseen pore-scale geometrical states with R2=0.98R^2 = 0.98.Comment: 6 Pages, 2 Figures, and Supporting Materia
    corecore