1,461 research outputs found

    Stability of Few-Charge Systems in Quantum Mechanics

    Full text link
    We consider non-relativistic systems in quantum mechanics interacting through the Coulomb potential, and discuss the existence of bound states which are stable against spontaneous dissociation into smaller atoms or ions. We review the studies that have been made of specific mass configurations and also the properties of the domain of stability in the space of masses or inverse masses. These rigorous results are supplemented by numerical investigations using accurate variational methods. A section is devoted to systems of three arbitrary charges and another to molecules in a world with two space-dimensions.Comment: 101 pages, review articl

    Universal quantum fluctuations of a cavity mode driven by a Josephson junction

    Get PDF
    We analyze the quantum dynamics of a superconducting cavity coupled to a voltage biased Josephson junction. The cavity is strongly excited at resonances where the voltage energy lost by a Cooper pair traversing the circuit is a multiple of the cavity photon energy. We find that the resonances are accompanied by substantial squeezing of the quantum fluctuations of the cavity over a broad range of parameters and are able to identify regimes where the fluctuations in the system take on universal values.Comment: 5 pages, 4 figure

    Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator

    Get PDF
    Recent experiments on quantum behavior in microfabricated solid-state systems suggest tantalizing connections to quantum optics. Several of these experiments address the prototypical problem of cavity quantum electrodynamics: a two-level system coupled to a quantum harmonic oscillator. Such devices may allow the exploration of parameter regimes outside the near-resonance and weak-coupling assumptions of the ubiquitous rotating-wave approximation (RWA), necessitating other theoretical approaches. One such approach is an adiabatic approximation in the limit that the oscillator frequency is much larger than the characteristic frequency of the two-level system. A derivation of the approximation is presented and the time evolution of the two-level-system occupation probability is calculated using both thermal- and coherent-state initial conditions for the oscillator. Closed-form evaluation of the time evolution in the weak-coupling limit provides insight into the differences between the thermal- and coherent-state models. Finally, potential experimental observations in solid-state systems, particularly the Cooper-pair box--nanomechanical resonator system, are discussed and found to be promising.Comment: 16 pages, 11 figures; revised abstract; some text revisions; added two figures and combined others; added references. Submitted to Phys. Rev.

    Beyond shareholder primacy? Reflections on the trajectory of UK corporate governance.

    Get PDF
    Core institutions of UK corporate governance, in particular the City Code on Takeovers and Mergers, the Combined Code on Corporate Governance and the law on directors’ duties, are strongly orientated towards the norm of shareholder primacy. Beyond the core, however, stakeholder interests are better represented, in particular at the intersection of insolvency and employment law. This reflects the influence of European Community laws on information and consultation of employees. In addition, there are signs that some institutional shareholders are redirecting their investment strategies, under government encouragement, away from a focus on short-term returns, in such a way as to favour stakeholder-inclusive practices by firms. On this basis we suggest that the UK system is currently in a state of flux and that the debate over shareholder primacy has not been concluded

    Effect of positron-atom interactions on the annihilation gamma spectra of molecules

    Full text link
    Calculations of gamma spectra for positron annihilation on a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The annihilation gamma spectra characterise the momentum distribution of the electron-positron pair at the instant of annihilation. The contribution to the gamma spectra from individual molecular orbitals is obtained from electron momentum densities calculated using modern computational quantum chemistry density functional theory tools. The calculation, in its simplest form, effectively treats the low-energy (thermalised, room-temperature) positron as a plane wave and gives annihilation gamma spectra that are about 40% broader than experiment, although the main chemical trends are reproduced. We show that this effective "narrowing" of the experimental spectra is due to the action of the molecular potential on the positron, chiefly, due to the positron repulsion from the nuclei. It leads to a suppression of the contribution of small positron-nuclear separations where the electron momentum is large. To investigate the effect of the nuclear repulsion, as well as that of short-range electron-positron and positron-molecule correlations, a linear combination of atomic orbital description of the molecular orbitals is employed. It facilitates the incorporation of correction factors which can be calculated from atomic many-body theory and account for the repulsion and correlations. Their inclusion in the calculation gives gamma spectrum linewidths that are in much better agreement with experiment. Furthermore, it is shown that the effective distortion of the electron momentum density, when it is observed through positron annihilation gamma spectra, can be approximated by a relatively simple scaling factor.Comment: 26 pages, 12 figure

    Measuring mechanical motion with a single spin

    Get PDF
    We study theoretically the measurement of a mechanical oscillator using a single two level system as a detector. In a recent experiment, we used a single electronic spin associated with a nitrogen vacancy center in diamond to probe the thermal motion of a magnetized cantilever at room temperature {Kolkowitz et al., Science 335, 1603 (2012)}. Here, we present a detailed analysis of the sensitivity limits of this technique, as well as the possibility to measure the zero point motion of the oscillator. Further, we discuss the issue of measurement backaction in sequential measurements and find that although backaction heating can occur, it does not prohibit the detection of zero point motion. Throughout the paper we focus on the experimental implementation of a nitrogen vacancy center coupled to a magnetic cantilever; however, our results are applicable to a wide class of spin-oscillator systems. Implications for preparation of nonclassical states of a mechanical oscillator are also discussed.Comment: 17 pages, 6 figure

    Variational calculations for the hydrogen-antihydrogen system with a mass-scaled Born-Oppenheimer potential

    Full text link
    The problem of proton-antiproton motion in the H{\rm H}--Hˉ{\rm \bar{H}} system is investigated by means of the variational method. We introduce a modified nuclear interaction through mass-scaling of the Born-Oppenheimer potential. This improved treatment of the interaction includes the nondivergent part of the otherwise divergent adiabatic correction and shows the correct threshold behavior. Using this potential we calculate the vibrational energy levels with angular momentum 0 and 1 and the corresponding nuclear wave functions, as well as the S-wave scattering length. We obtain a full set of all bound states together with a large number of discretized continuum states that might be utilized in variational four-body calculations. The results of our calculations gives an indication of resonance states in the hydrogen-antihydrogen system

    Fermi point in graphene as a monopole in momentum space

    Full text link
    We consider the effective field theory of graphene monolayer with the Coulomb interaction between fermions taken into account. The gauge field in momentum space is introduced. The position of the Fermi point coincides with the position of the corresponding monopole. The procedure of extracting such monopoles during lattice simulations is suggested.Comment: Latex, 12 page
    • …
    corecore