7,238 research outputs found

    Phase Transitions and superuniversality in the dynamics of a self-driven particle

    Full text link
    We study an active random walker model in which a particle's motion is determined by a self-generated field. The field encodes information about the particle's path history. This leads to either self-attractive or self-repelling behavior. For self-repelling behavior, we find a phase transition in the dynamics: when the coupling between the field and the walker exceeds a critical value, the particle's behavior changes from renormalized diffusion to one characterized by a diverging diffusion coefficient. The dynamical behavior for all cases is surprisingly independent of dimension and of the noise amplitude.Comment: 14 pages, 4 figure

    Managing soil biodiversity: The New Zealand experience

    Get PDF
    Species diversity is a very important component of a healthy soil ecosystem, and a necessary condition for long-term sustainable development. However, it is widely recognised that soil degradation and species extinction are on the increase in New Zealand, as land resources come under pressure from urban expansion and modern agribusiness. New Zealand's soils, flora and fauna have evolved many unique elements during their long isolation from other land masses. Habitat destruction and introduced plants and animals have, therefore, had increasingly detrimental effects on indigenous biodiversity. New Zealand must conserve what remains
    corecore