12 research outputs found

    Nascent Adhesions: From Fluctuations to a Hierarchical Organization

    Get PDF
    SummaryIntegrins assemble a complex network of molecular interactions at cell–matrix adhesion sites. Fluorescence correlation microscopy has now shed light on the spatial, temporal and numerical distributions of protein complexes during assembly and stabilization of nascent adhesions

    Axonal Transmission in the Retina Introduces a Small Dispersion of Relative Timing in the Ganglion Cell Population Response

    Get PDF
    Background: Visual stimuli elicit action potentials in tens of different retinal ganglion cells. Each ganglion cell type responds with a different latency to a given stimulus, thus transforming the high-dimensional input into a temporal neural code. The timing of the first spikes between different retinal projection neurons cells may further change along axonal transmission. The purpose of this study is to investigate if intraretinal conduction velocity leads to a synchronization or dispersion of the population signal leaving the eye. Methodology/Principal Findings: We 'imaged' the initiation and transmission of light-evoked action potentials along individual axons in the rabbit retina at micron-scale resolution using a high-density multi-transistor array. We measured unimodal conduction velocity distributions (1.3 +/- 0.3 m/sec, mean +/- SD) for axonal populations at all retinal eccentricities with the exception of the central part that contains myelinated axons. The velocity variance within each piece of retina is caused by ganglion cell types that show narrower and slightly different average velocity tuning. Ganglion cells of the same type respond with similar latency to spatially homogenous stimuli and conduct with similar velocity. For ganglion cells of different type intraretinal conduction velocity and response latency to flashed stimuli are negatively correlated, indicating that differences in first spike timing increase (up to 10 msec). Similarly, the analysis of pair-wise correlated activity in response to white-noise stimuli reveals that conduction velocity and response latency are negatively correlated. Conclusion/Significance: Intraretinal conduction does not change the relative spike timing between ganglion cells of the same type but increases spike timing differences among ganglion cells of different type. The fastest retinal ganglion cells therefore act as indicators of new stimuli for postsynaptic neurons. The intraretinal dispersion of the population activity will not be compensated by variability in extraretinal conduction times, estimated from data in the literature

    Fluorescence interference-contrast microscopy on oxidized silicon using a monomolecular dye layer

    Full text link

    Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin

    No full text
    Integrins require an activation step prior to ligand binding and signaling. How talin and kindlin contribute to these events in non-hematopoietic cells is poorly understood. Here we report that fibroblasts lacking either talin or kindlin failed to activate β1 integrins, adhere to fibronectin (FN) or maintain their integrins in a high affinity conformation induced by Mn2+. Despite compromised integrin activation and adhesion, Mn2+ enabled talin- but not kindlin-deficient cells to initiate spreading on FN. This isotropic spreading was induced by the ability of kindlin to directly bind paxillin, which in turn bound focal adhesion kinase (FAK) resulting in FAK activation and the formation of lamellipodia. Our findings show that talin and kindlin cooperatively activate integrins leading to FN binding and adhesion, and that kindlin subsequently assembles an essential signaling node at newly formed adhesion sites in a talin-independent manner.ISSN:2050-084
    corecore