150 research outputs found

    Employing surfactant-assisted hydrothermal synthesis to control CuGaO2 nanoparticle formation and improved carrier selectivity of perovskite solar cells

    Full text link
    Delafossites like CuGaO2 have appeared as promising p-type semiconductor materials for opto-electronic applications mainly due to their high optical transparency and electrical conductivity. However, existing synthetic efforts usually result in particles with large diameter limiting their performance relevant to functional electronic applications. In this article, we report a novel surfactant-assisted hydrothermal synthesis method, which allows the development of ultrafine (~5 nm) monodispersed p-type CuGaO2 nanoparticles (NPs). We show that DMSO can be used as a ligand and dispersing solvent for stabilizing the CuGaO2 NPs. The resulting dispersion is used for the fabrication of dense, compact functional CuGaO2 electronic layer with properties relevant to advanced optoelectronic applications. As a proof of concept, the surfactant-assisted hydrothermal synthesized CuGaO2 is incorporated as a hole transporting layer (HTL) in the inverted p-i-n perovskite solar cell device architecture providing improved hole carrier selectivity and power conversion efficiency compared to conventional PEDOT:PSS HTL based perovskite solar cells

    Room Temperature Nanoparticulate Interfacial Layers for Perovskite Solar Cells via solvothermal synthesis

    Full text link
    We present a solvothermal synthetic route to produce monodispersed CuO nanoparticles (NPs) in the range of 5-10 nm that can be used as hole selective interfacial layer between indium tin oxide (ITO) and perovskite active layer for p-i-n perovskite solar cells by a spin casting the dispersions at room temperature. The bottom electrode interface modification provided by spherical CuO-NPs at room temperature promotes the formation of high quality perovskite photoactive layers with large crystal size and strong optical absorption. Furthermore, it is shown that the nanoparticulate nature of the CuO hole transporting interfacial layer can be used to improve light manipulation within perovskite solar cell device structure. The corresponding p-i-n CH3NH3PbI3-based solar cells show high Voc values of 1.09 V, which is significantly higher compared to the Voc values obtained with conventional PEDOT:PSS hole selective contact based perovskite solar cells

    Long Thermal Stability of Inverted Perovskite Photovoltaics Incorporating Fullerene-based Diffusion Blocking Layer

    Full text link
    In this article, the stability of p-i-n perovskite solar cells is studied under accelerated heat lifetime conditions (60 oC ,85oC and N2 atmosphere). By using a combination of buffer layer engineering, impedance spectroscopy and other characterization techniques, we propose the interaction of the perovskite active layer with the top Al metal electrode through diffusion mechanisms as the major thermal degradation pathway for planar inverted perovskite photovoltaics (PVs) under 85oC heat conditions. We show that by using thick solution processed fullerene buffer layer the perovskite active layer can be isolated from the top metal electrode and improve the lifetime performance of the inverted perovskite photovoltaics at 85 oC. Finally, we present an optimized solution processed inverted perovskite PV device using thick fullerene-based diffusion blocking layer with over 1000 hours accelerated heat lifetime performance at 60oC

    Distribution of Visitor Use Management Research in US Wilderness from 2000 to 2020: A Scoping Review

    Get PDF
    Visitor use in wilderness has grown over the past several decades, along with research focused on visitor use management (VUM) in congressionally designated wilderness. This scoping review of research published between 2000 and 2020 explores the distribution and representativeness of wilderness VUM research within the context of (a) the federal land management agencies administering wilderness and (b) the geographic distribution of research. Findings indicate wilderness administered by the Bureau of Land Management and US Fish and Wildlife Service were disproportionately understudied compared to both the total acreage of wilderness and number of wilderness areas administered by the US Forest Service and National Park Service. Additionally, large geographic gaps exist in the research produced during this period, with clusters of VUM-related research occurring in high-profile wilderness areas and the vast majority (89%) of wilderness areas generating no research. As we look toward the next 20 years of wilderness VUM-related research, these findings suggest a need for a more representative narrative and highlight several specific opportunities for future research

    Nanoparticulate Metal Oxide Top Electrode Interface Modification Improves the Thermal Stability of Inverted Perovskite Photovoltaics

    Full text link
    Solution processed {\gamma}-Fe2O3 nanoparticles via the solvothermal colloidal synthesis in conjunction with ligand-exchange method are used for interface modification of the top electrode in inverted perovskite solar cells. In comparison to more conventional top electrodes such as PC(70)BM/Al and PC(70)BM/AZO/Al, we show that incorporation of a {\gamma}-Fe2O3 provides an alternative solution processed top electrode (PC(70)BM/{\gamma}-Fe2O3/Al) that not only results in comparable power conversion efficiencies but also improved thermal stability of inverted perovskite photovoltaics. The origin of improved stability of inverted perovskite solar cells incorporating PC(70)BM/ {\gamma}-Fe2O3/Al under accelerated heat lifetime conditions is attributed to the acidic surface nature of {\gamma}-Fe2O3 and reduced charge trapped density within PC(70)BM/ {\gamma}-Fe2O3/Al top electrode interfaces.Comment: 24 pages, 11 figure

    Exploring Underserved Communities’ Perspectives on Wilderness Character in Everglades National Park

    Get PDF
    Issues related to diversity, equity, and inclusion are becoming increasingly important to park and protected area managers. Recently, several Executive Orders have established policies and priorities for steering public lands to better serve the diversity of the US public. Certain groups, compared to the US population at large, are underrepresented as visitors to parks and protected areas in the US, including BIPOC communities (Black, Indigenous, and other People of Color), women, people with disabilities, veterans, people with lower socioeconomic status, and the elderly. This disparity in visitation may be even more pronounced in federally designated wilderness areas. We present a qualitative study focused on the relationships of traditionally underserved groups with Everglades National Park, specifically focusing on perceptions of wilderness character in the Marjory Stoneman Douglas Wilderness. Findings illuminate both perceived benefits of wilderness, including positive mental health, ecosystem services, and a connection to unique aspects of wilderness character in the Everglades, as well as conflicted feelings about wilderness as a place that underemphasizes historic interactions of underrepresented communities with the landscape. We discuss management implications, particularly ways to focus protected area efforts to broaden the relevancy of wilderness lands and better serve diverse populations within local communities
    corecore