109 research outputs found

    Beyond the paradigm of weight loss in non‐alcoholic fatty liver disease: From pathophysiology to novel dietary approaches

    Get PDF
    Current treatment recommendations for non-alcoholic fatty liver disease (NAFLD) rely heavily on lifestyle interventions. The Mediterranean diet and physical activity, aiming at weight loss, have shown good results in achieving an improvement of this liver disease. However, concerns related to compliance and food accessibility limit the feasibility of this approach, and data on the long-term effects on liver-related outcomes are lacking. Insulin resistance is a central aspect in the pathophysiology of NAFLD; therefore, interventions aiming at the improvement of insulin sensitivity may be preferable. In this literature review, we provide a comprehensive summary of the available evidence on nutritional approaches in the management of NAFLD, involving low-calorie diets, isocaloric diets, and the novel schemes of intermittent fasting. In addition, we explore the harmful role of single nutrients on liver-specific key metabolic pathways, the role of gene susceptibility and microbiota, and behavioral aspects that may impact liver disease and are often underreported in clinical setting. At present, the high variability in terms of study populations and liver-specific outcomes within nutritional studies limits the generalizability of the results and highlights the urgent need of a tailored and standardized approach, as seen in regulatory trials in Non-Alcoholic Steatohepatitis (NASH)

    Application of reverse micelle sol-gel synthesis for bulk doping and heteroatoms Surface Enrichment in Mo-Doped TiO 2 nanoparticles

    Get PDF
    TiO 2 nanoparticles containing 0.0, 1.0, 5.0, and 10.0 wt.% Mo were prepared by a reverse micelle template assisted sol-gel method allowing the dispersion of Mo atoms in the TiO 2 matrix. Their textural and surface properties were characterized by means of X-ray powder diffraction, micro-Raman spectroscopy, N 2 adsorption/desorption isotherms at -196 °C, energy dispersive X-ray analysis coupled to field emission scanning electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance UV-Vis spectroscopy, and ζ-potential measurement. The photocatalytic degradation of Rhodamine B (under visible light and low irradiance) in water was used as a test reaction as well. The ensemble of the obtained experimental results was analyzed in order to discover the actual state of Mo in the final materials, showing the occurrence of both bulk doping and Mo surface species, with progressive segregation of MoO x species occurring only at a higher Mo content

    The Impact of Dysmetabolic Sarcopenia Among Insulin Sensitive Tissues: A Narrative Review

    Get PDF
    Sarcopenia is a common muscular affection among elderly individuals. More recently, it has been recognized as the skeletal muscle (SM) expression of the metabolic syndrome. The prevalence of sarcopenia is increasing along with visceral obesity, to which it is tightly associated. Nonetheless, it is a still underreported entity by clinicians, despite the worsening in disease burden and reduced patient quality of life. Recognition of sarcopenia is clinically challenging, and variability in study populations and diagnostic methods across the clinical studies makes it hard to reach a strong evidence. Impaired insulin activity in SM is responsible for the altered molecular pathways and clinical manifestations of sarcopenia, which is morphologically expressed by myosteatosis. Lipotoxicity, oxidative stress and adipose tissue-derived inflammation lead to both alterations in glucose disposal and protein synthesis in SM, with raising insulin resistance (IR) and SM atrophy. In particular, hyperleptinemia and leptin resistance interfere directly with SM activity, but also with the release of Growth Hormone from the hypohysis, leading to a lack in its anabolic effect on SM. Moreover, sarcopenia is independently associated to liver fibrosis in Non-Alcoholic Fatty Liver Disease (NAFLD), which in turn worsens SM functionality through the secretion of proinflammatory heptokines. The cross-talk between the liver and SM in the IR setting is of crucial relevance, given the high prevalence of NAFLD and the reciprocal impact of insulin-sensitive tissues on the overall disease burden. Along with the efforts of non-invasive diagnostic approaches, irisin and myostatin are two myokines currently evaluated as potential biomarkers for diagnosis and prognostication. Decreased irisin levels seem to be potentially associated to sarcopenia, whereas increased myostatin has shown to negatively impact on sarcopenia in pre-clinical studies. Gene variants in irisin have been explored with regard to the impact on the liver disease phenotype, with conflicting results. The gut-muscle axis has gain relevance with the evidence that insulin resistance-derived gut dysbiosis is responsible for increased endotoxemia and reduction in short-chain free fatty acids, directly affecting and predisposing to sarcopenia. Based on the current evidence, more efforts are needed to increase awareness and improve the management of sarcopenic patients

    Tragacanth gum as green binder for sustainable water-processable electrochemical capacitor

    Get PDF
    9Enabling green fabrication processes for energy storage devices is becoming a key aspect in order to achieve a sustainable fabrication cycle. Here we focus on the exploitation of the tragacanth gum, an exudated gum like arabic and karaya gums, as green binder for the preparation of carbon-based for electrochemical capacitors. The electrochemical performance of tragacanth (TRGC)-based electrodes are thoroughly investigated and compared with another water-soluble binder largely used in this field, i.e. sodium-carboxymethyl cellulose (CMC). Apart from the higher sustainability both in production and processing, TRGC exhibits a lower impact on the obstruction of pores in the final active material film with respect to CMC, allowing for more available surface area. This directly impacts on the electrochemical performances resulting in a higher specific capacitance and better rate capability. Moreover, the TRGC-based supercapacitor shows a superior thermal stability than CMC with a capacity retention of about 80 % after 10.000 cycles at 70 °C.partially_openopenScalia, Alberto; Zaccagnini, Pietro; Armandi, Marco; Latini, Giulio; Versaci, Daniele; Lanzio, Vittorino; Varzi, Alberto; Passerini, Stefano; Lamberti, AndreaScalia, Alberto; Zaccagnini, Pietro; Armandi, Marco; Latini, Giulio; Versaci, Daniele; Lanzio, Vittorino; Varzi, Alberto; Passerini, Stefano; Lamberti, Andre

    Tragacanth Gum as Green Binder for Sustainable Water-Processable Electrochemical Capacitor

    Get PDF
    Enabling green fabrication processes for energy storage devices is becoming a key aspect in order to achieve a sustainable fabrication cycle. Here, the focus was on the exploitation of the tragacanth gum, an exudated gum like arabic and karaya gums, as green binder for the preparation of carbon‐based materials for electrochemical capacitors. The electrochemical performance of tragacanth (TRGC)‐based electrodes was thoroughly investigated and compared with another water‐soluble binder largely used in this field, sodium‐carboxymethyl cellulose (CMC). Apart from the higher sustainability both in production and processing, TRGC exhibited a lower impact on the obstruction of pores in the final active material film with respect to CMC, allowing for more available surface area. This directly impacted the electrochemical performance, resulting in a higher specific capacitance and better rate capability. Moreover, the TRGC‐based supercapacitor showed a superior thermal stability compared with CMC, with a capacity retention of about 80 % after 10000 cycles at 70 °C

    Solid-state ion exchange of Fe in small pore SSZ-13 zeolite: Characterization of the exchanged species and their relevance for the NOx SCR reaction

    Get PDF
    Solid state ion exchange was performed for the successful introduction of Fe cations in the small pore CHA structured SSZ-13 zeolite. The produced catalysts were characterized by IR and UV-Vis spectroscopies and thermally programmed reaction techniques to probe the Fe sites formed during the exchange and the catalytic activity for the NOx SCR reaction. The results indicate that highly dispersed and heterogeneous Fe sites are formed, and the type depends on the Al distribution in the zeolite. Dimeric Fe species are formed preferentially at the start of the exchange on the 6- and 8-member rings that contain at least two Al exchange sites and once these sites are fully saturated the Fe is exchanged as isolated cations
    • 

    corecore