7 research outputs found

    Dual Effects of Hydrogen Sulfide Donor on Meiosis and Cumulus Expansion of Porcine Cumulus-Oocyte Complexes

    No full text
    <div><p>Hydrogen sulfide (H<sub>2</sub>S) has been revealed to be a signal molecule with second messenger action in the somatic cells of many tissues, including the reproductive tract. The aim of this study was to address how exogenous H<sub>2</sub>S acts on the meiotic maturation of porcine oocytes, including key maturation factors such as MPF and MAPK, and cumulus expansion intensity of cumulus-oocyte complexes. We observed that the H<sub>2</sub>S donor, Na<sub>2</sub>S, accelerated oocyte <i>in vitro</i> maturation in a dose-dependent manner, following an increase of MPF activity around germinal vesicle breakdown. Concurrently, the H<sub>2</sub>S donor affected cumulus expansion, monitored by hyaluronic acid production. Our results suggest that the H<sub>2</sub>S donor influences oocyte maturation and thus also participates in the regulation of cumulus expansion. The exogenous H<sub>2</sub>S donor apparently affects key signal pathways of oocyte maturation and cumulus expansion, resulting in faster oocyte maturation with little need of cumulus expansion.</p></div

    Effect of Na<sub>2</sub>S on HA content in expanded cumulus.

    No full text
    <p>(A) Total and retained HA content in COCs cultivated with 150–900 µM Na<sub>2</sub>S for 48 hs, total HA is related to the control group. (B) Total and retained HA content in COCs during <i>in vitro</i> cultivation with 300 µM Na<sub>2</sub>S over 12 h time scale, total HA is related to the control group after 48 h cultivation. (C) Total and retained HA content in COCs and OOXs cultivated with or without H<sub>2</sub>S donor, total HA is related to the control group of COCs. H<sub>2</sub>S: 300 µM Na<sub>2</sub>S. <sup>a,b,c</sup>Statistically significant differences among experimental groups in total HA, <sup>1,2</sup>statistically significant differences among experimental groups in retained HA, *statistically significant differences in total HA between control and H<sub>2</sub>S groups (P<0.05).</p

    Effect of Na<sub>2</sub>S on partenogenetic development of porcine oocytes.

    No full text
    <p>Oocytes were matured with or without Na<sub>2</sub>S and partenogenetically activated using calcium ionophore. Pronucleus formation after 24 h zygote culture, cleavage rate after 2 days and blastocyst achievement after 7 days presumptive embryos culture were evaluated (%±SE).</p><p>H<sub>2</sub>S: 300 µM Na<sub>2</sub>S during oocyte maturation.</p><p>*Statistically significant differences between control and H<sub>2</sub>S group – in column (P<0.05).</p

    Effect of Na<sub>2</sub>S on MPF and MAPK activities during oocyte cultivation.

    No full text
    <p>Representative autoradiograms and signal quantifications of phosphorylated histone H1 (A) and MBP (B) reflecting MPF and MAPK activity, respectively. Kinase activity was measured in oocytes cultivated with or without Na<sub>2</sub>S over 2 h time scale. The kinase activity was related to oocytes cultivated for 24 hs. C: control; H<sub>2</sub>S: 300 µM Na<sub>2</sub>S. *Statistically significant differences between control and H<sub>2</sub>S groups (P<0.05).</p

    Effect of Na<sub>2</sub>S on meiotic resumption and transition to meiosis II during oocyte cultivation.

    No full text
    <p>Proportion of GVBD (A) and meiosis I to II transition (B) in oocytes during <i>in vitro</i> cultivation over 2 h time scale. H<sub>2</sub>S: 300 µM Na<sub>2</sub>S. *Statistically significant differences between control and H<sub>2</sub>S groups (P<0.05).</p

    Effect of Na<sub>2</sub>S on meiosis resumption and transition to meiosis II in DOs.

    No full text
    <p>Proportion of GVBD (A) and meiosis I to II transition (B) during <i>in vitro</i> cultivation after 20 and 30 h <i>in vitro</i> cultivation, respectively. H<sub>2</sub>S: 300 µM Na<sub>2</sub>S. <sup>a,b,c</sup>Statistically significant differences among experimental groups (P<0.05).</p
    corecore