5 research outputs found

    Producing Cherry Tomatoes in Urban Agriculture

    No full text
    Agriculture in urban and urbanizing areas will be increasingly critical to enhancing food security and food sovereignty, creating income, strengthening social interactions, and improving health outcomes in cities. We used three roofs, a hydroponic system, an aquaponic system, and field rows in an urban environment to grow six dwarf tomato cultivars: ‘Micro Tom’, ‘Red Robin’, ‘Sweet ‘n’ Neat’, ‘Terenzo’, ‘Tiny Tim’, and ‘Tumbler.’ We measured the marketable yield and non-marketable yield, mass of non-marketable tomatoes exhibiting defects, and the content of 12 mineral nutrients in fruits. We found the productivity often varied among cultivars within a cropping system. ‘Terenzo’ and ‘Tumbler’ were always some of the most productive cultivars, whereas ‘Micro Tom’ was normally among the least productive cultivars. The production from ‘Red Robin’, ‘Tiny Tim’, and ‘Sweat ‘n’ Neat’ was more variable, sometimes producing high, moderate, or low mass. The mineral content was especially variable across the cultivars and we did not identify cultivars that were consistently high or low in mineral content across systems, indicating that the mineral content was highly influenced by a genotype x environment interaction. The amount of 5 minerals differed across cultivars in aquaponics, 9 differed in hydroponics, and 6–12 differed in the roof systems. A high-yielding cultivar should be selected first and production methods can then be modified to maximize the nutrient content

    Producing Cherry Tomatoes in Urban Agriculture

    No full text
    Agriculture in urban and urbanizing areas will be increasingly critical to enhancing food security and food sovereignty, creating income, strengthening social interactions, and improving health outcomes in cities. We used three roofs, a hydroponic system, an aquaponic system, and field rows in an urban environment to grow six dwarf tomato cultivars: ‘Micro Tom’, ‘Red Robin’, ‘Sweet ‘n’ Neat’, ‘Terenzo’, ‘Tiny Tim’, and ‘Tumbler.’ We measured the marketable yield and non-marketable yield, mass of non-marketable tomatoes exhibiting defects, and the content of 12 mineral nutrients in fruits. We found the productivity often varied among cultivars within a cropping system. ‘Terenzo’ and ‘Tumbler’ were always some of the most productive cultivars, whereas ‘Micro Tom’ was normally among the least productive cultivars. The production from ‘Red Robin’, ‘Tiny Tim’, and ‘Sweat ‘n’ Neat’ was more variable, sometimes producing high, moderate, or low mass. The mineral content was especially variable across the cultivars and we did not identify cultivars that were consistently high or low in mineral content across systems, indicating that the mineral content was highly influenced by a genotype x environment interaction. The amount of 5 minerals differed across cultivars in aquaponics, 9 differed in hydroponics, and 6–12 differed in the roof systems. A high-yielding cultivar should be selected first and production methods can then be modified to maximize the nutrient content

    Fish Effluent as a Source of Water and Nutrients for Sustainable Urban Agriculture

    No full text
    Integrating urban agriculture with aquaculture can reduce the use and cost of water, competition for water, chemical fertilizers, and environmental impact of discharging nutrient-rich agricultural water into fresh and saltwater bodies. In addition, aquaculture in cities can directly benefit human health by providing a local source of lean protein. Despite the potential advantages, few studies have demonstrated the feasibility and production advantages of using aquaculture wastewater to fertigate specialty crops in an urban environment. Therefore, we grew four spring crops (bok choy, tatsoi, radish, turnip) and two fall crops (pole beans, sugar snap peas) in nutrient-rich effluent from fish aquaculture versus well or municipal water to evaluate whether the effluent improved soil fertility and crop production. The fish effluent resulted in changes to the soil through an increase in pH and potassium and to crop production through a 9.1% increase in the number of pole beans (mass of beans also trended toward significance). The soils we used were relatively nutrient-rich prior to the application of the fish effluent, which may be responsible for the limited impact, and differences may be more apparent in acidic and nutrient-poor soils or when fertigation is used over a longer duration

    Fish Effluent as a Source of Water and Nutrients for Sustainable Urban Agriculture

    No full text
    Integrating urban agriculture with aquaculture can reduce the use and cost of water, competition for water, chemical fertilizers, and environmental impact of discharging nutrient-rich agricultural water into fresh and saltwater bodies. In addition, aquaculture in cities can directly benefit human health by providing a local source of lean protein. Despite the potential advantages, few studies have demonstrated the feasibility and production advantages of using aquaculture wastewater to fertigate specialty crops in an urban environment. Therefore, we grew four spring crops (bok choy, tatsoi, radish, turnip) and two fall crops (pole beans, sugar snap peas) in nutrient-rich effluent from fish aquaculture versus well or municipal water to evaluate whether the effluent improved soil fertility and crop production. The fish effluent resulted in changes to the soil through an increase in pH and potassium and to crop production through a 9.1% increase in the number of pole beans (mass of beans also trended toward significance). The soils we used were relatively nutrient-rich prior to the application of the fish effluent, which may be responsible for the limited impact, and differences may be more apparent in acidic and nutrient-poor soils or when fertigation is used over a longer duration

    The relationship between spindly leg syndrome incidence and water composition, overfeeding, and diet in newly metamorphosed harlequin frogs (Atelopus spp.)

    No full text
    Spindly Leg Syndrome (SLS) is a persistent animal welfare issue associated with the rearing of amphibians in captivity. We conducted two experiments to investigate the effects of diet, water composition and overfeeding on prevalence of SLS in newly metamorphosed harlequin frogs ( Atelopus spp.). In our first experiment, we offered 400 full-sibling tadpoles of Atelopus certus isocaloric diets in treatments of 31%, 37%, 42% and 48% crude protein respectively. Tadpoles fed higher protein diets metamorphosed faster, but the incidence of SLS exceeded 80% in all treatments leading to the conclusion that variation in dietary protein was not responsible for causing SLS. We used 720 full-sibling Atelopus glyphus tadpoles in a second experiment to examine the effects of diet type, water composition and diet ration on SLS. We found that an overall incidence of 58% spindly leg in tadpoles reared in tap water, but reduced to about 10% in water treated by reverse osmosis and then reconstituted. It is possible that the reverse osmosis treatment removed some factor that caused the SLS, or that the reconstitution may have added a mineral lacking in the original tap water. Within tap water treatments, overfeeding tadpoles in tanks increased the incidence of SLS. We recommend further experimental research into this condition to identify the causative factors in the water. Additional research into the nutritional composition of food available to wild tadpoles would be useful in formulating captive diets, that have to date been solely based on surrogate species
    corecore