170 research outputs found

    Comparative advantages of mechanical biosensors

    Get PDF
    Mechanical interactions are fundamental to biology. Mechanical forces of chemical origin determine motility and adhesion on the cellular scale, and govern transport and affinity on the molecular scale. Biological sensing in the mechanical domain provides unique opportunities to measure forces, displacements and mass changes from cellular and subcellular processes. Nanomechanical systems are particularly well matched in size with molecular interactions, and provide a basis for biological probes with single-molecule sensitivity. Here we review micro- and nanoscale biosensors, with a particular focus on fast mechanical biosensing in fluid by mass- and force-based methods, and the challenges presented by non-specific interactions. We explain the general issues that will be critical to the success of any type of next-generation mechanical biosensor, such as the need to improve intrinsic device performance, fabrication reproducibility and system integration. We also discuss the need for a greater understanding of analyte–sensor interactions on the nanoscale and of stochastic processes in the sensing environment

    The stochastic dynamics of micron and nanoscale elastic cantilevers in fluid: fluctuations from dissipation

    Get PDF
    The stochastic dynamics of micron and nanoscale cantilevers immersed in a viscous fluid are quantified. Analytical results are presented for long slender cantilevers driven by Brownian noise. The spectral density of the noise force is not assumed to be white and the frequency dependence is determined from the fluctuation-dissipation theorem. The analytical results are shown to be useful for the micron scale cantilevers that are commonly used in atomic force microscopy. A general thermodynamic approach is developed that is valid for cantilevers of arbitrary geometry as well as for arrays of multiple cantilevers whose stochastic motion is coupled through the fluid. It is shown that the fluctuation-dissipation theorem permits the calculation of stochastic quantities via straightforward deterministic methods. The thermodynamic approach is used with deterministic finite element numerical simulations to quantify the autocorrelation and noise spectrum of cantilever fluctuations for a single micron scale cantilever and the cross-correlations and noise spectra of fluctuations for an array of two experimentally motivated nanoscale cantilevers as a function of cantilever separation. The results are used to quantify the noise reduction possible using correlated measurements with two closely spaced nanoscale cantilevers.Comment: Submitted to Nanotechnology April 26, 200

    Metric Features of a Dipolar Model

    Full text link
    The lattice spin model, with nearest neighbor ferromagnetic exchange and long range dipolar interaction, is studied by the method of time series for observables based on cluster configurations and associated partitions, such as Shannon entropy, Hamming and Rohlin distances. Previous results based on the two peaks shape of the specific heat, suggested the existence of two possible transitions. By the analysis of the Shannon entropy we are able to prove that the first one is a true phase transition corresponding to a particular melting process of oriented domains, where colored noise is present almost independently of true fractality. The second one is not a real transition and it may be ascribed to a smooth balancing between two geometrical effects: a progressive fragmentation of the big clusters (possibly creating fractals), and the slow onset of a small clusters chaotic phase. Comparison with the nearest neighbor Ising ferromagnetic system points out a substantial difference in the cluster geometrical properties of the two models and in their critical behavior.Comment: 20 pages, 15 figures, submitted to JPhys

    Interaction imaging with amplitude-dependence force spectroscopy

    Full text link
    Knowledge of surface forces is the key to understanding a large number of processes in fields ranging from physics to material science and biology. The most common method to study surfaces is dynamic atomic force microscopy (AFM). Dynamic AFM has been enormously successful in imaging surface topography, even to atomic resolution, but the force between the AFM tip and the surface remains unknown during imaging. Here, we present a new approach that combines high accuracy force measurements and high resolution scanning. The method, called amplitude-dependence force spectroscopy (ADFS) is based on the amplitude-dependence of the cantilever's response near resonance and allows for separate determination of both conservative and dissipative tip-surface interactions. We use ADFS to quantitatively study and map the nano-mechanical interaction between the AFM tip and heterogeneous polymer surfaces. ADFS is compatible with commercial atomic force microscopes and we anticipate its wide-spread use in taking AFM toward quantitative microscopy

    A 30-Min Nucleic Acid Amplification Point-of-Care Test for Genital Chlamydia trachomatis Infection in Women: A Prospective, Multi-center Study of Diagnostic Accuracy.

    Get PDF
    BACKGROUND: Rapid Point-Of-Care Tests for Chlamydia trachomatis (CT) may reduce onward transmission and reproductive sexual health (RSH) sequelae by reducing turnaround times between diagnosis and treatment. The io® single module system (Atlas Genetics Ltd.) runs clinical samples through a nucleic acid amplification test (NAAT)-based CT cartridge, delivering results in 30min. METHODS: Prospective diagnostic accuracy study of the io® CT-assay in four UK Genito-Urinary Medicine (GUM)/RSH clinics on additional-to-routine self-collected vulvovaginal swabs. Samples were tested "fresh" within 10days of collection, or "frozen" at -80°C for later testing. Participant characteristics were collected to assess risk factors associated with CT infection. RESULTS: CT prevalence was 7.2% (51/709) overall. Sensitivity, specificity, positive and negative predictive values of the io® CT assay were, respectively, 96.1% (95% Confidence Interval (CI): 86.5-99.5), 97.7% (95%CI: 96.3-98.7), 76.6% (95%CI: 64.3-86.2) and 99.7% (95%CI: 98.9-100). The only risk factor associated with CT infection was being a sexual contact of an individual with CT. CONCLUSIONS: The io® CT-assay is a 30-min, fully automated, high-performing NAAT currently CE-marked for CT diagnosis in women, making it a highly promising diagnostic to enable specific treatment, initiation of partner notification and appropriately intensive health promotion at the point of care

    A 30-minute nucleic acid amplification point-of-care test for genital<i>Chlamydia trachomatis</i>infection in women: a prospective, multi-centre study of diagnostic accuracy

    Get PDF
    ABSTRACTBackgroundRapid Point-Of-Care Tests (POCTs) forChlamydia trachomatis(CT) may reduce onward transmission and reproductive sexual health (RSH) sequelae by reducing turnaround times between diagnosis and treatment. The io®single module system (Atlas Genetics Ltd) runs clinical samples through a microfluidic CT cartridge, delivering results in 30 minutes. We evaluated its performance on female genital samples in four UK Genito-Urinary Medicine (GUM)/RSH clinics.MethodsProspective diagnostic accuracy study, using BD ProbeTec CT/GC assay as the routine clinic nucleic acid amplification test (NAAT) as the initial comparator test, and the QIAgen Artus CT assay to resolve discrepancies. In these instances, the reference standard was defined as the resolved result when two out of three assay results concurred. Female participants aged ≥16 provided additional-to-routine self-collected vulvovaginal swabs. Samples were tested fresh with the io®CT assay within 7 days of collection, or were frozen at −80°C for later testing. Participant clinical, demographic and behavioural characteristics were collected to assess risk factors associated with CT infection.ResultsOf 785 participants recruited, final analyses were conducted on 709 (90.3%). CT prevalence was 7.2% (51/709) overall. Sensitivity, specificity, positive and negative predictive values of the io®CT assay were, respectively, 96.1% (95% Confidence Interval (CI): 86.5-99.5), 97.7% (95%CI: 96.3-98.7), 76.6% (95%CI: 64.3-86.2) and 99.7% (95%CI: 98.9-100). There was no significant difference in performance measures between fresh and frozen samples, or between symptomatic and asymptomatic participants (p&gt;0.05). The only risk factor associated with CT infection was being a sexual contact of an individual with CT.ConclusionsThe io®CT-assay is the only 30-minute, fully automated, high-performing NAAT currently CE-marked for CT diagnosis in women, making it a highly promising diagnostic to enable specific treatment, initiation of partner notification and appropriately intensive health promotion at the point of care. Future research is required to evaluate acceptability by clinicians and patients in GUM/RSH clinics, impact on clinical pathways and patient management, and cost-effectiveness.</jats:sec

    Risk of breast cancer and other cancers in heterozygotes for ataxia-telangiectasia

    Get PDF
    Mortality from cancer among 178 parents and 236 grandparents of 95 British patients with ataxia-telangiectasia was examined. For neither parents nor grandparents was mortality from all causes or from cancer appreciably elevated over that of the national population. Among mothers, three deaths from breast cancer gave rise to a standardized mortality ratio of 3.37 (95% confidence interval (CI): 0.69–9.84). In contrast, there was no excess of breast cancer in grandmothers, the standardized mortality ratio being 0.89 (95% CI: 0.18–2.59), based on three deaths. This is the largest study of families of ataxia-telangiectasia patients conducted in Britain but, nonetheless, the study is small and CIs are wide. However, taken together with data from other countries, an increased risk of breast cancer among female heterozygotes is still apparent, though lower than previously thought. © 1999 Cancer Research Campaig

    Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.

    Get PDF
    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed
    • …
    corecore