20 research outputs found

    Effects of injection timing of diesel fuel on performance and emission of dual fuel diesel engine powered by diesel/E85 fuels

    Get PDF
    The paper presents the results of the investigation of Dual Fuel (DF) diesel engines powered by high bioethanol contain fuel – E85. The object of the investigation is a three-cylinder Compression Ignition (CI) Internal Combustion Engine (ICE) powered by diesel oil and bioethanol fuel E85 injected into the intake port as a DF engine. With the increase in the share of E85 fuel the highest intensification of the combustion process takes place in the main stage of the combustion and the ignition delay increases as well. The researchers are conducted using Computational Fluid Dynamics (CFD) method; the results of the investigation are successfully verified based on the indicator diagrams, heat performance rate and emissions. Based on CFD results the cross sections investigation of the combustion chamber it can be seen that in case of the DF engine, the flame front propagates with a higher speed. The initial phase of the combustion starts in a different location of the combustion chamber than in the classic CI engine. Replacement of diesel fuel by E85 in 20% resulted in the shortening of the combustion duration more than 2-times. With the increase of energetic share in E85 the soot emission is decreased at all ranges of the analysed operations of the engine. The oppositerelationship was observed in case of NO emission. With the increase of E85 in the fuel, the emission of NO increased

    Modeling of Thermal Cycle CI Engine with Multi-Stage Fuel Injection

    Full text link
    This work presents a complete thermal cycle modeling of a four-stroke diesel engine with a three-dimensional simulation program CFD - AVL Fire. The object of the simulation was the S320 Andoria engine. The purpose of the study was to determine the effect of fuel dose distribution on selected parameters of the combustion process. As a result of the modeling, time spatial pressure distributions, rate of pressure increase, heat release rate and NO and soot emission were obtained for 3 injection strategies: no division, one pilot dose and one main dose and two pilot doses and one main dose. It has been found that the use of pilot doses on the one hand reduces engine hardness and lowers NO emissions and on the other hand, increases soot emissions

    Generator gas as a fuel to power a diesel engine

    No full text
    The results of gasification process of dried sewage sludge and use of generator gas as a fuel for dual fuel turbocharged compression ignition engine are presented. The results of gasifying showed that during gasification of sewage sludge is possible to obtain generator gas of a calorific value in the range of 2.15 2.59 MJ/m3. It turned out that the generator gas can be effectively used as a fuel to the compression ignition engine. Because of gas composition, it was possible to run engine with partload conditions. In dual fuel operation the high value of indicated efficiency was achieved equal to 35%, so better than the efficiency of 30% attainable when being fed with 100% liquid fuel. The dual fuel engine version developed within the project can be recommended to be used in practice in a dried sewage sludge gasification plant as a dual fuel engine driving the electric generator loaded with the active electric power limited to 40 kW (which accounts for approx. 50% of its rated power), because it is at this power that the optimal conditions of operation of an engine dual fuel powered by liquid fuel and generator gas are achieved. An additional advantage is the utilization of waste generated in the wastewater treatment plant

    Influence of Gasoline Addition on Biodiesel Combustion in a Compression-Ignition Engine with Constant Settings

    No full text
    This paper presents results of investigation of co-combustion process of biodiesel with gasoline, in form of mixture and using dual fuel technology. The main objective of this work was to show differences in both combustion systems of the engine powered by fuels of different reactivity. This paper presents parameters of the engine and the assessment of combustion stability. It turns out that combustion process of biodiesel was characterized by lower ignition delay compared to diesel fuel combustion. For 0.54 of gasoline energetic fraction, the ignition delay increased by 25% compared to the combustion of the pure biodiesel, but for dual fuel technology for 0.95 of gasoline fraction it was decreased by 85%. For dual fuel technology with the increase in gasoline fraction, the specific fuel consumption (SFC) was decreased for all analyzed fractions of gasoline. In the case of blend combustion, the SFC was increased in comparison to dual fuel technology. An analysis of spread of ignition delay and combustion duration was also presented. The study confirmed that it is possible to co-combust biodiesel with gasoline in a relatively high energetic fraction. For the blend, the ignition delay was up to 0.54 and for dual fuel it was near to 0.95

    Co-combustion of biodiesel with oxygenated fuels in direct injection diesel engine

    No full text
    The paper presents results of experimental investigation of cocombustion process of biodiesel (B100) blended with oxygenated fuels with 20% in volume. As the alternative fuels ware used hydrated ethanol, methanol, 1-butanol and 2-propanol. It was investigated the influence of used blends on operating parameters of the test engine and exhaust emission (NOx, CO, THC, CO2). It is observed that used blends are characterized by different impact on engine output power and its efficiency. Using biodiesel/alcohol blend it is possible to improve engine efficiency with small drop in indicated mean effective pressure (IMEP). Due to combustion characteristic of biodiesel/alcohol obtained a slightly larger specific NOx emission. It was also observed some differences in combustion phases due to various values of latent heat of evaporation of used alcohols and various oxygen contents. Test results confirmed that the combustion process occurring in the diesel engine powered by blend takes place in a shorter time than in the typical diesel engine

    Experimental investigations on combustion, performance and emissions characteristics of compression ignition engine powered by B100/ethanol blend

    No full text
    In the study are presented the results of co-combustion of biodiesel B100 with ethanol fuel as blend. The 1-cylinder direct injection compression ignition engine was used during the study. Tests were conducted at a constant angle of fuel injection and constant rotational speed equal to 1500 rpm. Results of thermal cycle parameters and emission characteristics are presented. On the basis of results stated that ethanol fuel fraction in blend causes the increase in peak heat release rate. With the increase in ethanol fuel fraction the ignition delay increased but combustion duration decreased. With the increase in ethanol fuel fraction in blend thermal efficiency increased as well. It also noticed almost constant emission of THC, the increase in NOx emissions and decrease emissions in CO and CO2

    Effects of Propanol on the Performance and Emissions of a Dual-Fuel Industrial Diesel Engine

    No full text
    The search for alternative fuels that can limit the use of traditional fossil fuels to power internal combustion engines is one of the main tasks faced by both the modern automotive industry and the modern energy industry. This paper presents experimental tests of a compression ignition engine, in which the conventional fuel, i.e., diesel, was partially replaced with propyl alcohol, i.e., a renewable biofuel. Studies on the co-combustion of diesel fuel with propanol were carried out, in which the energy share of alcohol varied from 0 to 65%. The research showed that an increase in the proportion of propanol, up to 30%, resulted in a significant increase in the rate of heat release and the rate of pressure increase in the cylinder of a compression-ignition engine. Increasing the alcohol content to 65% resulted in an increase in the ignition delay time and significantly shortened the duration of combustion. During the combustion of diesel fuel with a 50% propanol share, the engine was characterized by maximum efficiency, higher than diesel fuel combustion by 5.5%. The addition of propanol caused a slight deterioration of the combustion stability determined by the coefficient of variation for IMEP. The study of engine exhaust emissions has shown that the combustion of diesel fuel with a small proportion of propanol, up to 30%, causes an increase in nitrogen oxide emissions, while up to 50% contributes to a decrease in HC emissions. The increased share of alcohol contributed to a significant decrease in the emissions of both carbon monoxide and carbon dioxide, and caused a significant reduction in the concentration of soot in the exhaust of the compression-ignition engine

    Evaluation of Combustion Stability and Exhaust Emissions of a Stationary Compression Ignition Engine Powered by Diesel/n-Butanol and RME Biodiesel/n-Butanol Blends

    No full text
    In recent years, the interest in renewable fuels has increased mainly due to regulations regulating the permissible limits of toxic components of exhaust gases emitted by reciprocating engines. This paper presents the results of a comparison of the effects of fueling a compression-ignition piston engine with a mixture of diesel fuel and n-butanol, as well as RME (Rapeseed Oil Methyl Esters) biodiesel and n-butanol. The tests were carried out for a constant load and a wide energetic share of fuels in the mixture. The main focus was on the assessment of combustion stability, the uniqueness of the combustion stages, and the assessment of the fuel type influence on the CA50 angle. The tests show that RME offers the possibility of efficient combustion with n-butanol with up to 80% energy share. The share of n-butanol has a positive effect on the engine’s efficiency and very effectively reduces soot emissions. Without the influence on COVIMEP, the share of n-butanol up to 40% in the mixture with diesel fuel and up to 80% in the mixture with RME was recorded. Combustion of RME with n-butanol was more stable. The share of n-butanol in the mixture with diesel fuel caused an increase in NOx emissions, and co-combustion with RME caused a decrease in emissions

    The Effect of RME-1-Butanol Blends on Combustion, Performance and Emission of a Direct Injection Diesel Engine

    No full text
    The main objective of this study was assessment of the performance, emissions and combustion characteristics of a diesel engine using RME–1-butanol blends. In assessing the combustion process, great importance was placed on evaluating the stability of this process. Not only were the typical COVIMEP indicators assessed, but also the non-burnability of the characteristic combustion stages: ignition delay, time of 50% heat release and the end of combustion. The evaluation of the combustion process based on the analysis of heat release. The tests carried out on a 1-cylinder diesel engine operating at a constant load. Research and evaluation of the combustion process of a mixture of RME and 1-butanol carried out for the entire range of shares of both fuels up to 90% of 1-butanol energetic fraction. The participation of butanol in combustion process with RME increased the in-cylinder peak pressure and the heat release rate. With the increase in the share of butanol there was noted a decrease in specific energy consumption and an increase in engine efficiency. The share of butanol improved the combustion stability. There was also an increase in NOx emissions and decrease in CO and soot emissions. The engine can be power by blend up to 80% energy share of butanol
    corecore