18 research outputs found

    Unraveling SSc Pathophysiology; The Myofibroblast

    Get PDF
    Systemic sclerosis (SSc) is a severe auto-immune disease, characterized by vasculopathy and fibrosis of connective tissues. SSc has a high morbidity and mortality and unfortunately no disease modifying therapy is currently available. A key cell in the pathophysiology of SSc is the myofibroblast. Myofibroblasts are fibroblasts with contractile properties that produce a large amount of pro-fibrotic extracellular matrix molecules such as collagen type I. In this narrative review we will discuss the presence, formation, and role of myofibroblasts in SSc, and how these processes are stimulated and mediated by cells of the (innate) immune system such as mast cells and T helper 2 lymphocytes. Furthermore, current novel therapeutic approaches to target myofibroblasts will be highlighted for future perspective

    Therapeutic Options for Systemic Sclerosis: Current and Future Perspectives in Tackling Immune-Mediated Fibrosis

    No full text
    Systemic sclerosis (SSc) is a severe auto-immune, rheumatic disease, characterized by excessive fibrosis of the skin and visceral organs. SSc is accompanied by high morbidity and mortality rates, and unfortunately, few disease-modifying therapies are currently available. Inflammation, vasculopathy, and fibrosis are the key hallmarks of SSc pathology. In this narrative review, we examine the relationship between inflammation and fibrosis and provide an overview of the efficacy of current and novel treatment options in diminishing SSc-related fibrosis based on selected clinical trials. To do this, we first discuss inflammatory pathways of both the innate and acquired immune systems that are associated with SSc pathophysiology. Secondly, we review evidence supporting the use of first-line therapies in SSc patients. In addition, T cell-, B cell-, and cytokine-specific treatments that have been utilized in SSc are explored. Finally, the potential effectiveness of tyrosine kinase inhibitors and other novel therapeutic approaches in reducing fibrosis is highlighted

    Additional file 1: Figure S1. of TGFβ1-induced SMAD2/3 and SMAD1/5 phosphorylation are both ALK5-kinase-dependent in primary chondrocytes and mediated by TAK1 kinase activity

    No full text
    Expression of ALK1, ALK2, ALK3 and ALK5 mRNA in primary bovine cartilage and chondrocytes. a With the use of qPCR, expression of ALK1, ALK2, ALK3 and ALK5 was measured in both freshly isolated cartilage explants and in primary chondrocytes after 1 week of cell culture in DMEM/F12 supplemented with 10% non-heat-inactivated FCS without passage. All four ALKs were readily detected in both groups, but expression of all the receptors was higher in freshly isolated tissue. For calculations of the -ΔCt, two reference genes were used: bGapdh and bRps14. (PDF 2065 kb

    An improved diagnostic tool to predict cartilage formation in an osteoarthritic joint environment

    No full text
    Osteoarthritis (OA) is a degenerative joint disease with progressive articular cartilage loss. Due to the chondrogenic potential of human mesenchymal stromal cells (MSCs), MSC-based therapies are promising treatment strategies for cartilage loss. However, the local joint microenvironment has a great impact on the success of cartilage formation by MSCs. This local joint environment is different between patients and therefore the outcome of MSC therapies is uncertain. We previously developed gene promoter-based reporter assays as a novel tool to predict the effect of a patient's OA joint microenvironment on the success of MSC-based cartilage formation. Here we describe an improved version of this molecular tool with increased prediction accuracy. For this, we generated fourteen stable cell lines using transcription factor (TF) binding elements (AP1, ARE, CRE, GRE, ISRE, NFAT5, NFκB, PPRE, SBE, SIE, SOX9, SRE, SRF, TCF/LEF) to drive luciferase reporter gene expression, and evaluated the cell lines for their responsiveness to an osteoarthritic microenvironment by stimulation with OA synovium-conditioned medium (OAs-cm; n=31). To study the effect of this OA microenvironment on MSC-based cartilage formation, MSCs were cultured in a three-dimensional pellet culture model while stimulated with OAs-cm. Cartilage formation was assessed histologically and by quantifying sulfated glycosaminoglycan (sGAG) production. Six TF reporters correlated significantly with the effect of OAs-cm on cartilage formation. We validated the predictive value of these TF reporters with an independent cohort of OAs-cm (n=22) and compared the prediction accuracy between our previous and the current new tool. Furthermore, we investigated which combination of reporters could predict the effect of the OA microenvironment on cartilage repair with the highest accuracy. A combination between the TF (NFκB) and the promoter-based (IL6) reporter proved to reach a more accurate prediction compared to the tools separately. These developments are an important step towards a diagnostic tool that can be used for personalized cartilage repair strategies for OA patients

    An improved diagnostic tool to predict cartilage formation in an osteoarthritic joint environment

    Get PDF
    Osteoarthritis (OA) is a degenerative joint disease with progressive articular cartilage loss. Due to the chondrogenic potential of human mesenchymal stromal cells (MSCs), MSC-based therapies are promising treatment strategies for cartilage loss. However, the local joint microenvironment has a great impact on the success of cartilage formation by MSCs. This local joint environment is different between patients and therefore the outcome of MSC therapies is uncertain. We previously developed gene promoter-based reporter assays as a novel tool to predict the effect of a patient's OA joint microenvironment on the success of MSC-based cartilage formation. Here we describe an improved version of this molecular tool with increased prediction accuracy. For this, we generated fourteen stable cell lines using transcription factor (TF) binding elements (AP1, ARE, CRE, GRE, ISRE, NFAT5, NFκB, PPRE, SBE, SIE, SOX9, SRE, SRF, TCF/LEF) to drive luciferase reporter gene expression, and evaluated the cell lines for their responsiveness to an osteoarthritic microenvironment by stimulation with OA synovium-conditioned medium (OAs-cm; n=31). To study the effect of this OA microenvironment on MSC-based cartilage formation, MSCs were cultured in a three-dimensional pellet culture model while stimulated with OAs-cm. Cartilage formation was assessed histologically and by quantifying sulfated glycosaminoglycan (sGAG) production. Six TF reporters correlated significantly with the effect of OAs-cm on cartilage formation. We validated the predictive value of these TF reporters with an independent cohort of OAs-cm (n=22) and compared the prediction accuracy between our previous and the current new tool. Furthermore, we investigated which combination of reporters could predict the effect of the OA microenvironment on cartilage repair with the highest accuracy. A combination between the TF (NFκB) and the promoter-based (IL6) reporter proved to reach a more accurate prediction compared to the tools separately. These developments are an important step towards a diagnostic tool that can be used for personalized cartilage repair strategies for OA patients

    Fibroblast Activation Protein Targeted Photodynamic Therapy Selectively Kills Activated Skin Fibroblasts from Systemic Sclerosis Patients and Prevents Tissue Contraction

    No full text
    Systemic sclerosis (SSc) is a rare, severe, auto-immune disease characterized by inflammation, vasculopathy and fibrosis. Activated (myo)fibroblasts are crucial drivers of this fibrosis. By exploiting their expression of fibroblast activation protein (FAP) to perform targeted photodynamic therapy (tPDT), we can locoregionally deplete these pathogenic cells. In this study, we explored the use of FAP-tPDT in primary skin fibroblasts from SSc patients, both in 2D and 3D cultures. Method: The FAP targeting antibody 28H1 was conjugated with the photosensitizer IRDye700DX. Primary skin fibroblasts were obtained from lesional skin biopsies of SSc patients via spontaneous outgrowth and subsequently cultured on plastic or collagen type I. For 2D FAP-tPDT, cells were incubated in buffer with or without the antibody-photosensitizer construct, washed after 4 h and exposed to λ = 689 nm light. Cell viability was measured using CellTiter Glo®®. For 3D FAP-tPDT, cells were seeded in collagen plugs and underwent the same treatment procedure. Contraction of the plugs was followed over time to determine myofibroblast activity. Results: FAP-tPDT resulted in antibody-dose dependent cytotoxicity in primary skin fibroblasts upon light exposure. Cells not exposed to light or incubated with an irrelevant antibody-photosensitizer construct did not show this response. FAP-tPDT fully prevented contraction of collagen plugs seeded with primary SSc fibroblasts. Even incubation with a very low dose of antibody (0.4 nM) inhibited contraction in 2 out of 3 donors. Conclusions: Here we have shown, for the first time, the potential of FAP-tPDT for the treatment of fibrosis in SSc skin

    Identification of Transcription Factors Responsible for a Transforming Growth Factor-β-Driven Hypertrophy-like Phenotype in Human Osteoarthritic Chondrocytes

    No full text
    During osteoarthritis (OA), hypertrophy-like chondrocytes contribute to the disease process. TGF-β’s signaling pathways can contribute to a hypertrophy(-like) phenotype in chondrocytes, especially at high doses of TGF-β. In this study, we examine which transcription factors (TFs) are activated and involved in TGF-β-dependent induction of a hypertrophy-like phenotype in human OA chondrocytes. We found that TGF-β, at levels found in synovial fluid in OA patients, induces hypertrophic differentiation, as characterized by increased expression of RUNX2, COL10A1, COL1A1, VEGFA and IHH. Using luciferase-based TF activity assays, we observed that the expression of these hypertrophy genes positively correlated to SMAD3:4, STAT3 and AP1 activity. Blocking these TFs using specific inhibitors for ALK-5-induced SMAD signaling (5 µM SB-505124), JAK-STAT signaling (1 µM Tofacitinib) and JNK signaling (10 µM SP-600125) led to the striking observation that only SB-505124 repressed the expression of hypertrophy factors in TGF-β-stimulated chondrocytes. Therefore, we conclude that ALK5 kinase activity is essential for TGF-β-induced expression of crucial hypertrophy factors in chondrocytes

    Identification of Transcription Factors Responsible for a Transforming Growth Factor-β-Driven Hypertrophy-like Phenotype in Human Osteoarthritic Chondrocytes

    No full text
    During osteoarthritis (OA), hypertrophy-like chondrocytes contribute to the disease process. TGF-β’s signaling pathways can contribute to a hypertrophy(-like) phenotype in chondrocytes, especially at high doses of TGF-β. In this study, we examine which transcription factors (TFs) are activated and involved in TGF-β-dependent induction of a hypertrophy-like phenotype in human OA chondrocytes. We found that TGF-β, at levels found in synovial fluid in OA patients, induces hypertrophic differentiation, as characterized by increased expression of RUNX2, COL10A1, COL1A1, VEGFA and IHH. Using luciferase-based TF activity assays, we observed that the expression of these hypertrophy genes positively correlated to SMAD3:4, STAT3 and AP1 activity. Blocking these TFs using specific inhibitors for ALK-5-induced SMAD signaling (5 µM SB-505124), JAK-STAT signaling (1 µM Tofacitinib) and JNK signaling (10 µM SP-600125) led to the striking observation that only SB-505124 repressed the expression of hypertrophy factors in TGF-β-stimulated chondrocytes. Therefore, we conclude that ALK5 kinase activity is essential for TGF-β-induced expression of crucial hypertrophy factors in chondrocytes

    Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β.

    No full text
    ScopeExtracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in newborns. It is, however, unknown whether extracellular vesicles are still present in commercial milk and, more importantly, whether they retained their bioactivity. Here, we characterize the extracellular vesicles present in semi-skimmed cow milk available for consumers and study their effect on T cells.Methods and resultsExtracellular vesicles from commercial milk were isolated and characterized. Milk-derived extracellular vesicles contained several immunomodulating miRNAs and membrane protein CD63, characteristics of exosomes. In contrast to RAW 267.4 derived extracellular vesicles the milk-derived extracellular vesicles were extremely stable under degrading conditions, including low pH, boiling and freezing. Milk-derived extracellular vesicles were easily taken up by murine macrophages in vitro. Furthermore, we found that they can facilitate T cell differentiation towards the pathogenic Th17 lineage. Using a (CAGA)12-luc reporter assay we showed that these extracellular vesicles carried bioactive TGF-β, and that anti-TGF-β antibodies blocked Th17 differentiation.ConclusionOur findings show that commercial milk contains stable extracellular vesicles, including exosomes, and carry immunoregulatory cargo. These data suggest that the extracellular vesicles present in commercial cow milk remains intact in the gastrointestinal tract and exert an immunoregulatory effect
    corecore