10 research outputs found

    Fast High-Resolution Screening Method for Reactive Surfaces by Combining Atomic Force Microscopy and Surface-Enhanced Raman Scattering

    No full text
    A fast high-resolution screening method for reactive surfaces is presented. Atomic force microscopy (AFM) and surface-enhanced Raman spectroscopy (SERS) are combined in one method in order to be able to obtain both morphological and chemical information about processes at a surface. In order to accurately align the AFM and SERS images, an alignment pattern on the substrate material is exploited. Subsequent SERS scans with sub-micron resolution are recorded in 30 min per scan for an area of 100 × 100 µm2 and are accompanied by morphological information, supplied by a fast AFM, of the same area. Hence, a complete reactivity overview is obtained within several hours with only a monolayer of reactant. To demonstrate the working principle of this method, a SERS substrate containing the alignment pattern and silver nanoparticle aggregates as catalytic sites is prepared to study the photo-catalytic reduction of p-nitrothiophenol (p-NTP)

    Investigation of the Kinetics of a Surface Photocatalytic Reaction in Two Dimensions with Surface-enhanced Raman Scattering

    No full text
    Heterogeneous catalysis is a surface phenomenon. Yet, though the catalysis itself takes place on surfaces, the reactants and products rapidly take the form of another physical state, as either a liquid or a gas. Catalytic reactions within a self-assembled monolayer are confined within two dimensions, as the molecules involved do not leave the surface. Surface-enhanced Raman spectroscopy is an ideal technique to probe these self-assembled monolayers as it gives molecular information in a measured volume limited to the surface. We show how surface-enhanced Raman spectroscopy can be used to determine the reaction kinetics of a two-dimensional reaction. As a proof of principle, we study the photocatalytic reduction of p-nitrothiophenol. A study of the reaction rate and dilution effects leads to the conclusion that a dimerization must take place as one of the reaction steps

    Investigation of the Kinetics of a Surface Photocatalytic Reaction in Two Dimensions with Surface-enhanced Raman Scattering

    No full text
    Heterogeneous catalysis is a surface phenomenon. Yet, though the catalysis itself takes place on surfaces, the reactants and products rapidly take the form of another physical state, as either a liquid or a gas. Catalytic reactions within a self-assembled monolayer are confined within two dimensions, as the molecules involved do not leave the surface. Surface-enhanced Raman spectroscopy is an ideal technique to probe these self-assembled monolayers as it gives molecular information in a measured volume limited to the surface. We show how surface-enhanced Raman spectroscopy can be used to determine the reaction kinetics of a two-dimensional reaction. As a proof of principle, we study the photocatalytic reduction of p-nitrothiophenol. A study of the reaction rate and dilution effects leads to the conclusion that a dimerization must take place as one of the reaction steps

    Profiling of liquid crystal displays with Raman spectroscopy: preprocessing of spectra

    No full text
    Raman spectroscopy is applied for characterizing paintable displays. Few other options than Raman spectroscopy exist for doing so because of the liquid nature of functional materials. The challenge is to develop a method that can be used for estimating the composition of a single display cell on the basis of the collected three-dimensional Raman spectra. A classical least squares (CLS) model is used to model the measured spectra. It is shown that spectral preprocessing is a necessary and critical step for obtaining a good CLS model and reliable compositional profiles. Different kinds of preprocessing are explained. For each data set the type and amount of preprocessing may be different. This is shown using two data sets measured on essentially the same type of display cell, but under different experimental conditions. For model validation three criteria are introduced: mean sum of squares of residuals, percentage of unexplained information (PUN), and average residual curve. It is shown that the decision about the best combination of preprocessing techniques cannot be based only on overall error indicators (such as PUN). In addition, local residual analysis must be done and the feasibility of the extracted profiles should be taken into accoun

    Unified description of potential profiles and electrical transport in unipolar and ambipolar organic field-effect transistors

    Get PDF
    Validation of models for charge transport in organic transistors is fundamentally important for their technological use. Usually current-voltage measurements are performed to investigate organic transistors. In situ scanning Kelvin probe microscopy measurements provide a powerful complementary technique to distinguish between models based on band and hopping transports. We perform combined current-voltage and Kelvin probe microscopy measurements on unipolar and ambipolar organic field-effect transistors. We demonstrate that by this combination we can stringently test these two different transport models and come up with a unified description of charge transport in disordered organic semiconductors.

    Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy

    No full text
    Heterogeneous catalysts play a pivotal role in the chemical industry, but acquiring molecular insights into functioning catalysts remains a significant challenge1, 2, 3, 4. Recent advances in micro-spectroscopic approaches have allowed spatiotemporal information to be obtained on the dynamics of single active sites and the diffusion of single molecules5, 6. However, these methods lack nanometre-scale spatial resolution and/or require the use of fluorescent labels. Here, we show that time-resolved tip-enhanced Raman spectroscopy can monitor photocatalytic reactions at the nanoscale. We use a silver-coated atomic force microscope tip to both enhance the Raman signal and to act as the catalyst. The tip is placed in contact with a self-assembled monolayer of p-nitrothiophenol molecules adsorbed on gold nanoplates. A photocatalytic reduction process is induced at the apex of the tip with green laser light, while red laser light is used to monitor the transformation process during the reaction. This dual-wavelength approach can also be used to observe other molecular effects such as monolayer diffusion
    corecore