4 research outputs found

    Thermal and Electrical Parameter Identification of a Proton Exchange Membrane Fuel Cell Using Genetic Algorithm

    Full text link
    [EN] Proton Exchange Membrane Fuel Cell (PEMFC) fuel cells is a technology successfully used in the production of energy from hydrogen, allowing the use of hydrogen as an energy vector. It is scalable for stationary and mobile applications. However, the technology demands more research. An important research topic is fault diagnosis and condition monitoring to improve the life and the efficiency and to reduce the operation costs of PEMFC devices. Consequently, there is a need of physical models that allow deep analysis. These models must be accurate enough to represent the PEMFC behavior and to allow the identification of different internal signals of a PEM fuel cell. This work presents a PEM fuel cell model that uses the output temperature in a closed loop, so it can represent the thermal and the electrical behavior. The model is used to represent a Nexa Ballard 1.2 kW fuel cell; therefore, it is necessary to fit the coefficients to represent the real behavior. Five optimization algorithms were tested to fit the model, three of them taken from literature and two proposed in this work. Finally, the model with the identified parameters was validated with real data.This research was funded by COLCIENCIAS (Administrative department of science, technology and innovation of Colombia) scholarship program PDBCEx, COLDOC 586, and the support provided by the Corporacion Universitaria Comfacauca, Popayan-ColombiaAriza-Chacón, HE.; Correcher Salvador, A.; Sánchez-Diaz, C.; Pérez-Navarro, Á.; García Moreno, E. (2018). Thermal and Electrical Parameter Identification of a Proton Exchange Membrane Fuel Cell Using Genetic Algorithm. Energies. 11(8):1-15. https://doi.org/10.3390/en11082099S115118Mehta, V., & Cooper, J. S. (2003). Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 114(1), 32-53. doi:10.1016/s0378-7753(02)00542-6Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P. R., & Harris, T. J. (1995). Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell: I . Mechanistic Model Development. Journal of The Electrochemical Society, 142(1), 1-8. doi:10.1149/1.2043866Tao, S., Si-jia, Y., Guang-yi, C., & Xin-jian, Z. (2005). Modelling and control PEMFC using fuzzy neural networks. Journal of Zhejiang University-SCIENCE A, 6(10), 1084-1089. doi:10.1631/jzus.2005.a1084Amphlett, J. C., Mann, R. F., Peppley, B. A., Roberge, P. R., & Rodrigues, A. (1996). A model predicting transient responses of proton exchange membrane fuel cells. Journal of Power Sources, 61(1-2), 183-188. doi:10.1016/s0378-7753(96)02360-9Mo, Z.-J., Zhu, X.-J., Wei, L.-Y., & Cao, G.-Y. (2006). Parameter optimization for a PEMFC model with a hybrid genetic algorithm. International Journal of Energy Research, 30(8), 585-597. doi:10.1002/er.1170YE, M., WANG, X., & XU, Y. (2009). Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. International Journal of Hydrogen Energy, 34(2), 981-989. doi:10.1016/j.ijhydene.2008.11.026Askarzadeh, A., & Rezazadeh, A. (2011). A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 36(8), 5047-5053. doi:10.1016/j.ijhydene.2011.01.070El-Fergany, A. A. (2018). Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser. IET Renewable Power Generation, 12(1), 9-17. doi:10.1049/iet-rpg.2017.0232Li, Q., Chen, W., Wang, Y., Liu, S., & Jia, J. (2011). Parameter Identification for PEM Fuel-Cell Mechanism Model Based on Effective Informed Adaptive Particle Swarm Optimization. IEEE Transactions on Industrial Electronics, 58(6), 2410-2419. doi:10.1109/tie.2010.2060456Ali, M., El-Hameed, M. A., & Farahat, M. A. (2017). Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renewable Energy, 111, 455-462. doi:10.1016/j.renene.2017.04.036Sun, Z., Wang, N., Bi, Y., & Srinivasan, D. (2015). Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm. Energy, 90, 1334-1341. doi:10.1016/j.energy.2015.06.081Gong, W., Yan, X., Liu, X., & Cai, Z. (2015). Parameter extraction of different fuel cell models with transferred adaptive differential evolution. Energy, 86, 139-151. doi:10.1016/j.energy.2015.03.117Turgut, O. E., & Coban, M. T. (2016). Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization – Differential Evolution algorithm. Ain Shams Engineering Journal, 7(1), 347-360. doi:10.1016/j.asej.2015.05.003Al-Othman, A. K., Ahmed, N. A., Al-Fares, F. S., & AlSharidah, M. E. (2015). Parameter Identification of PEM Fuel Cell Using Quantum-Based Optimization Method. Arabian Journal for Science and Engineering, 40(9), 2619-2628. doi:10.1007/s13369-015-1711-0Methekar, R. N., Prasad, V., & Gudi, R. D. (2007). Dynamic analysis and linear control strategies for proton exchange membrane fuel cell using a distributed parameter model. Journal of Power Sources, 165(1), 152-170. doi:10.1016/j.jpowsour.2006.11.047KUNUSCH, C., HUSAR, A., PULESTON, P., MAYOSKY, M., & MORE, J. (2008). Linear identification and model adjustment of a PEM fuel cell stack. International Journal of Hydrogen Energy, 33(13), 3581-3587. doi:10.1016/j.ijhydene.2008.04.052Li, C.-H., Zhu, X.-J., Cao, G.-Y., Sui, S., & Hu, M.-R. (2008). Identification of the Hammerstein model of a PEMFC stack based on least squares support vector machines. Journal of Power Sources, 175(1), 303-316. doi:10.1016/j.jpowsour.2007.09.049Fontes, G., Turpin, C., & Astier, S. (2010). A Large-Signal and Dynamic Circuit Model of a H2/O2\hbox{H}_{2}/\hbox{O}_{2} PEM Fuel Cell: Description, Parameter Identification, and Exploitation. IEEE Transactions on Industrial Electronics, 57(6), 1874-1881. doi:10.1109/tie.2010.2044731Cheng, S.-J., & Liu, J.-J. (2015). Nonlinear modeling and identification of proton exchange membrane fuel cell (PEMFC). International Journal of Hydrogen Energy, 40(30), 9452-9461. doi:10.1016/j.ijhydene.2015.05.109Buchholz, M., & Krebs, V. (2007). Dynamic Modelling of a Polymer Electrolyte Membrane Fuel Cell Stack by Nonlinear System Identification. Fuel Cells, 7(5), 392-401. doi:10.1002/fuce.200700013Meiler, M., Schmid, O., Schudy, M., & Hofer, E. P. (2008). Dynamic fuel cell stack model for real-time simulation based on system identification. Journal of Power Sources, 176(2), 523-528. doi:10.1016/j.jpowsour.2007.08.051Wang, C., Nehrir, M. H., & Shaw, S. R. (2005). Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits. IEEE Transactions on Energy Conversion, 20(2), 442-451. doi:10.1109/tec.2004.842357Restrepo, C., Konjedic, T., Garces, A., Calvente, J., & Giral, R. (2015). Identification of a Proton-Exchange Membrane Fuel Cell’s Model Parameters by Means of an Evolution Strategy. IEEE Transactions on Industrial Informatics, 11(2), 548-559. doi:10.1109/tii.2014.2317982Salim, R., Nabag, M., Noura, H., & Fardoun, A. (2015). The parameter identification of the Nexa 1.2 kW PEMFC’s model using particle swarm optimization. Renewable Energy, 82, 26-34. doi:10.1016/j.renene.2014.10.012Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.03

    Modelling, Parameter Identification, and Experimental Validation of a Lead Acid Battery Bank Using Evolutionary Algorithms

    Full text link
    [EN] Accurate and efficient battery modeling is essential to maximize the performance of isolated energy systems and to extend battery lifetime. This paper proposes a battery model that represents the charging and discharging process of a lead-acid battery bank. This model is validated over real measures taken from a battery bank installed in a research center placed at "El Choco", Colombia. In order to fit the model, three optimization algorithms (particle swarm optimization, cuckoo search, and particle swarm optimization + perturbation) are implemented and compared, the last one being a new proposal. This research shows that the identified model is able to estimate real battery features, such as state of charge (SOC) and charging/discharging voltage. The comparison between simulations and real measures shows that the model is able to absorb reading problems, signal delays, and scaling errors. The approach we present can be implemented in other types of batteries, especially those used in stand-alone systems.This research was supported by "Implementacion de un programa de desarrollo e investigacion de energias renovables en el departamento del Choco"-BPIN:20130000100285; COLCIENCIAS (Administrative Department of Science, Technology and Innovation of Colombia) scholarship program PDBCEx, COLDOC 586, and the support provided by the Corporacion Universitaria Comfacauca, Popayan-Colombia.Ariza-Chacón, HE.; Banguero-Palacios, E.; Correcher Salvador, A.; Pérez-Navarro, Á.; Morant Anglada, FJ. (2018). Modelling, Parameter Identification, and Experimental Validation of a Lead Acid Battery Bank Using Evolutionary Algorithms. Energies. 11(9):1-14. https://doi.org/10.3390/en11092361S11411

    MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response

    Full text link
    [EN] A Model Predictive Control (MPC) strategy based on the Evolutionary Algorithms (EA) is proposed for the optimal dispatch of renewable generation units and demand response in a grid-tied hybrid system. The generating system is based on the experimental setup installed in a Distributed Energy Resources Laboratory (LabDER), which includes an AC micro-grid with small scale PV/Wind/Biomass systems. Energy storage is by lead-acid batteries and an H2 system (electrolyzer, H2 cylinders and Fuel Cell). The energy demand is residential in nature, consisting of a base load plus others that can be disconnected or moved to other times of the day within a demand response program. Based on the experimental data from each of the LabDER renewable generation and storage systems, a micro-grid operating model was developed in MATLAB(C) to simulate energy flows and their interaction with the grid. The proposed optimization algorithm seeks the minimum hourly cost of the energy consumed by the demand and the maximum use of renewable resources, using the minimum computational resources. The simulation results of the experimental micro-grid are given with seasonal data and the benefits of using the algorithm are pointed out.Acevedo-Arenas, CY.; Correcher Salvador, A.; Sánchez-Diaz, C.; Ariza-Chacón, HE.; Alfonso-Solar, D.; Vargas-Salgado, C.; Petit-Suarez, JF. (2019). MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response. Energy Conversion and Management. 186:241-257. https://doi.org/10.1016/j.enconman.2019.02.044S24125718

    Experimental verification of hybrid renewable systems as feasible energy sources

    Full text link
    [EN] Renewable energies are a central element in the search for energy sustainability, so they are becoming a substantial component of the energy scenario of every country, both as systems connected to the grid or in stand-alone applications. Feasibility of these renewable energy systems could be necessary not only in their application in isolated areas, but also in systems connected to the grid, in this last case when their contribution reaches a substantial fraction of the total electricity demand. To overcome this reliability problem, hybrid renewable systems could become essential and activities to optimize their design should be addressed, both in the simulation and in the experimental areas. In this paper, a laboratory to simulate and verify the reliability of hybrid renewable systems is presented and its application to the feasibility analysis of multicomponent systems including photovoltaic panels, wind generator and biomass gasification plant, plus energy storage in a battery bank, are described.Pérez-Navarro, Á.; Alfonso-Solar, D.; Ariza-Chacón, HE.; Cárcel Carrasco, FJ.; Correcher Salvador, A.; Escrivá-Escrivá, G.; Hurtado, E.... (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy. 86(2):384-391. doi:10.1016/j.renene.2015.08.030S38439186
    corecore