295 research outputs found

    Electronic correlations on a metallic nanosphere

    Full text link
    We consider the correlation functions in a gas of electrons moving within a thin layer on the surface of nanosize sphere. A closed form of expressions for the RKKY indirect exchange, superconducting Cooper loop and `density-density' correlation function is obtained. The systematic comparison with planar results is made, the effects of spherical geometry are outlined. The quantum coherence of electrons leads to the enhancement of all correlations for the points--antipodes on the sphere. This effect is lost when the radius of the sphere exceeds the temperature coherence length.Comment: 5 pages, no figures, to appear in PRB (RC

    Ferrimagnetic mixed-spin ladders in weak and strong coupling limits

    Full text link
    We study two similar spin ladder systems with the ferromagnetic leg coupling. First model includes two sorts of spins, s= 1/2 and s= 1, and the second model comprises only s=1/2 legs coupled by a "triangular" rung exchange. The antiferromagnetic (AF) rung coupling destroys the long-range order and eventually makes the systems equivalent to the AF s=1/2 Heisenberg chain. We investigate the situation by different methods in weak and strong rung coupling limits. Particularly we compare the spin-wave theory and the bosonization method in the weak coupling regime of the second model. We analyze the spectra and correlations, and discuss the order parameter of these ladder systems.Comment: 12 pages, 4 figure

    Asymmetric spin-1/2 two-leg ladders

    Full text link
    We consider asymmetric spin-1/2 two-leg ladders with non-equal antiferromagnetic (AF) couplings J_|| and \kappa J_|| along legs (\kappa <= 1) and ferromagnetic rung coupling, J_\perp. This model is characterized by a gap \Delta in the spectrum of spin excitations. We show that in the large J_\perp limit this gap is equivalent to the Haldane gap for the AF spin-1 chain, irrespective of the asymmetry of the ladder. The behavior of the gap at small rung coupling falls in two different universality classes. The first class, which is best understood from the case of the conventional symmetric ladder at \kappa=1, admits a linear scaling for the spin gap \Delta ~ J_\perp. The second class appears for a strong asymmetry of the coupling along legs, \kappa J_|| << J_\perp << J_|| and is characterized by two energy scales: the exponentially small spin gap \Delta ~ J_\perp \exp(-J_|| / J_\perp), and the bandwidth of the low-lying excitations induced by a Suhl-Nakamura indirect exchange ~ J_\perp^2 /J_|| . We report numerical results obtained by exact diagonalization, density matrix renormalization group and quantum Monte Carlo simulations for the spin gap and various spin correlation functions. Our data indicate that the behavior of the string order parameter, characterizing the hidden AF order in Haldane phase, is different in the limiting cases of weak and strong asymmetry. On the basis of the numerical data, we propose a low-energy theory of effective spin-1 variables, pertaining to large blocks on a decimated lattice.Comment: 18 pages, 11 figure

    Spin gap and string order parameter in the ferromagnetic Spiral Staircase Heisenberg Ladder: a quantum Monte Carlo study

    Full text link
    We consider a spin-1/2 ladder with a ferromagnetic rung coupling J_\perp and inequivalent chains. This model is obtained by a twist (\theta) deformation of the ladder and interpolates between the isotropic ladder (\theta=0) and the SU(2) ferromagnetic Kondo necklace model (\theta=\pi). We show that the ground state in the (\theta,J_\perp) plane has a finite string order parameter characterising the Haldane phase. Twisting the chain introduces a new energy scale, which we interpret in terms of a Suhl-Nakamura interaction. As a consequence we observe a crossover in the scaling of the spin gap at weak coupling from \Delta/J_\| \propto J_\perp/J_\| for \theta < \theta_c \simeq 8\pi/9 to \Delta/J_\| \propto (J_\perp/J_\|)^2 for \theta > \theta_c. Those results are obtained on the basis of large scale Quantum Monte Carlo calculations.Comment: 4 page

    RKKY interaction in the nearly-nested Fermi liquid

    Full text link
    We present the results of analytical evaluation of the indirect RKKY interaction in a layered metal with nearly nested (almost squared) Fermi surface. The final expressions are obtained in closed form as a combination of Bessel functions. We discuss the notion of the ``2k_F'' oscillations and show that they occur as the far asymptote of our expressions. We show the existence of the intermediate asymptote of the interaction which is of the sign-reversal antiferromagnetic type and is the only term surviving in the limit of exact nesting. A good accordance of our analytical formulas with numerical findings is demonstrated until the interatomic distances. The obtained expressions for the Green's functions extend the previous analytical results into the region of intermediate distances as well.Comment: 9 pages, REVTEX, 3 .eps figures, to appear in PRB 1 Oct 199

    Centipede ladder at quarter filling

    Full text link
    We study the ground state and excitation spectrum of a quasi one-dimensional nanostructure consisting of a pole and rungs oriented in the opposite directions ("centipede ladder", CL) at quarter filling. The spin and charge excitation spectra are found in the limits of small and large longitudinal hopping tt_\| compared to the on-rung hopping rate tt_\perp and exchange coupling II_\perp. At small tt_\| the system with ferromagnetic on-rung exchange demonstrates instability against dimerization. Coherent propagation of charge transfer excitons is possible in this limit. At large tt_\| CL behaves like two-orbital Hubbard chain, but the gap opens in the charge excitation spectrum thus reducing the symmetry from SU(4) to SU(2). The spin excitations are always gapless and their dispersion changes from quadratic magnon-like for ferromagnetic on-rung exchange to linear spinon-like for antiferromagnetic on-rung exchange in weak longitudinal hopping limit.Comment: 10 pages, 7 eps figure

    Indirect RKKY interaction in any dimensionality

    Full text link
    We present an analytical method which enables one to find the exact spatial dependence of the indirect RKKY interaction between the localized moments via the conduction electrons for the arbitrary dimensionality nn. The corresponding momentum dependence of the Lindhard function is exactly found for any nn as well. Demonstrating the capability of the method we find the RKKY interaction in a system of metallic layers weakly hybridized to each other. Along with usual 2kF2k_F in-plane oscillations the RKKY interaction has the sign-reversal character in a direction perpendicular to layers, thus favoring the antiferromagnetic type of layers' stacking.Comment: 3 pages, REVTEX, accepted to Phys.Rev.

    People with mental disability as human rights carriers: the example of implementing the right to education in Russia

    Get PDF
    This study was aimed at investigating the realization of the right to education as a human right for people with mental disabilities in the context of Russi
    corecore