15 research outputs found
Shock-boundary-layer interaction in flight
A brief survey is given on the study of transonic shock/boundary layer effects in flight. Then the possibility of alleviating the adverse shock effects through passive shock control is discussed. A Swedish flight experiment on a swept wing attack aircraft is used to demonstrate how it is possible to reduce the extent of separated flow and increase the drag-rise Mach number significantly using a moderate amount of perforation of the surface
Flight test results of riblets at supersonic speeds
A flight experiment to test and evaluate the skin friction drag characteristics of a riblet surface in turbulent flow at supersonic speeds was conducted at NASA Dryden. Riblets of groove sizes 0.0030 and 0.0013 in. were mounted on the F-104G flight test fixture. The test surfaces were surveyed with boundary layer rakes and pressure orifices to examine the boundary layer profiles and pressure distributions of the flow. Skin friction reductions caused by the riblet surface were reported based on measured differences of momentum thickness between the smooth and riblet surfaces obtained from the boundary layer data. Flight test results for the 0.0030 in. riblet show skin friction reductions of 4 to 8 % for Mach numbers ranging from 1.2 to 1.6 and Reynolds numbers ranging from 2 to 3.4 million per unit foot. The results from the 0.0013 in. riblets show skin friction reductions of 4 to 15 % for Mach 1.2 to 1.4 and Reynolds numbers ranging from 3.6 to 6 million per unit foot
3-D High-Lift Flow-Physics Experiment - Transition Measurements
An analysis of the flow state on a trapezoidal wing model from the NASA 3-D High Lift Flow Physics Experiment is presented. The objective of the experiment was to characterize the flow over a non-proprietary semi-span three-element high-lift configuration to aid in assessing the state of the art in the computation of three-dimensional high-lift flows. Surface pressures and hot-film sensors are used to determine the flow conditions on the slat, main, and flap. The locations of the attachments lines and the values of the attachment line Reynolds number are estimated based on the model surface pressures. Data from the hot-films are used to determine if the flow is laminar, transitional, or turbulent by examining the hot-film time histories, statistics, and frequency spectra
Transition Documentation on a Three-Element High-Lift Configuration at High Reynolds Numbers: Analysis
A 2-D high-lift system experiment was conducted in August of 1996 in the Low Turbulence Pressure Tunnel at NASA Langley Research Center, Hampton, VA. The purpose of the experiment was to obtain transition measurements on a three element high-lift system for CFD code validation studies. A transition database has been created using the data from this experiment. The present report contains the analysis of the surface hot film data in terms of the transition locations on the three elements. It also includes relevant information regarding the pressure loads and distributions and the wakes behind the model to aid in the interpretation of the transition data. For some of the configurations the current pressure data has been compared with previous wind tunnel entries of the same model. The methodology used to determine the regions of transitional flow is outlined and each configuration tested has been analyzed. A discussion of interference effects, repeatability, and three-dimensional effects on the data is included
NASA LaRC FIB Multi-Channel Anemometry Recording System-User's Manual
This report is part of a series of reports describing a flow physics high-lift experiment conducted in NASA Langley Research Center's Low-Turbulence Pressure Tunnel (LTPT) in 1996. The anemometry system used in the experiment was originally designed for and used in flight tests with NASA's Boeing 737 airplane. Information that may be useful in the evaluation or use of the experimental data has been compiled. The report also contains details regarding record structure, how to read the embedded time code, as well as the output file formats used in the code reading the binary data
Recommended from our members
DESIGN AND CALIBRATION OF AN AIRBORNE MULTICHANNEL SWEPT-TUNED SPECTRUM ANALYZER
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, NevadaThis paper describes the design and calibration of a four-channel, airborne, swept-tuned spectrum analyzer used in two hypersonic flight experiments for characterizing dynamic data up to 25 kHz. Built mainly from commercially available analog function modules, the analyzer proved useful for an application with limited telemetry bandwidth, physical weight and volume, and electrical power. The authors discuss considerations that affect the frequency and amplitude calibrations, limitations of the design, and example flight data.International Foundation for TelemeteringProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection
Design and Calibration of an Airborne Multichannel Swept-Tuned Spectrum Analyzer
This paper describes the design and calibration of a four-channel, airborne, swept-tuned spectrum analyzer used in two hypersonic flight experiments for characterizing dynamic data up to 25 kHz. Built mainly from commercially available analog function modules, the analyzer proved useful for an application with limited telemetry bandwidth, physical weight and volume, and electrical power. The authors discuss considerations that affect the frequency and amplitude calibrations, limitations of the design, and example flight data
Transition Documentation on a Three-Element High-Lift Configuration at High Reynolds Numbers--Database
A 2-D (two dimensional) high-lift system experiment was conducted in August of 1996 in the Low Turbulence Pressure Tunnel at NASA Langley Research Center, Hampton, VA. The purpose of the experiment was to obtain transition measurements on a three element high-lift system for CFD (computational fluid dynamics) code validation studies. A transition database has been created using the data from this experiment. The present report details how the hot-film data and the related pressure data are organized in the database. Data processing codes to access the data in an efficient and reliable manner are described and limited examples are given on how to access the database and store acquired information
Prediction Of High-Lift Flows Using Turbulent Closure Models
The flow over two different multi-element airfoil configurations is computed using linear eddy viscosity turbulence models and a nonlinear explicit algebraic stress model. A subset of recently-measured transition locations using hot film on a McDonnell Douglas configuration is presented, and the effect of transition location on the computed solutions is explored. Deficiencies in wake profile computations are found to be attributable in large part to poor boundary layer prediction on the generating element, and not necessarily inadequate turbulence modeling in the wake. Using measured transition locations for the main element improves the prediction of its boundary layer thickness, skin friction, and wake profile shape. However, using measured transition locations on the slat still yields poor slat wake predictions. The computation of the slat flow field represents a key roadblock to successful predictions of multi-element flows. In general, the nonlinear explicit algebraic str..