7 research outputs found

    Management of tracheostomy in COVID-19 patients : The Japanese experience

    Get PDF
    Objective: Involvement in the tracheostomy procedure for COVID-19 patients can lead to a feeling of fear in medical staff. To address concerns over infection, we gathered and analyzed experiences with tracheostomy in the COVID-19 patient population from all over Japan. Methods: The data for health-care workers involved in tracheostomies for COVID-19-infected patients were gathered from academic medical centers or their affiliated hospitals from all over Japan. Results: Tracheostomies have been performed in 35 COVID-19 patients with a total of 91 surgeons, 49 anesthesiologists, and 49 surgical staff members involved. Twenty-eight (80%) patients underwent surgery more than 22 days after the development of COVID-19-related symptoms (11: 22-28 days and 17: >= 29 days). Thirty (85.7%) patients underwent surgery >= 15 days after intubation (14: 15-21 days, 6: 22-28 days, and 10: >= 29 days). Among the total of 189 health-care workers involved in the tracheostomy procedures, 25 used a powered air-purifying respirator (PAPR) and 164 used a N95 mask and eye protection. As a result, no transmission to staff occurred during the 2 weeks of follow-up after surgery. Conclusion: No one involved in tracheostomy procedures were found to have been infected with COVID-19 in this Japanese study. The reason is thought to be that the timing of the surgery was quite late after the infections, and the surgery was performed using appropriate PPE and surgical procedure. The indications for and timing of tracheostomy for severe COVID-19 patients should be decided through multidisciplinary discussion. (c) 2021 Oto-Rhino-Laryngological Society of Japan Inc. Published by Elsevier B.V. All rights reserved

    Comprehensive Genomic Profiling Reveals Clinical Associations in Response to Immune Therapy in Head and Neck Cancer

    No full text
    Comprehensive genomic profiling (CGP) provides information regarding cancer-related genetic aberrations. However, its clinical utility in recurrent/metastatic head and neck cancer (R/M HNC) remains unknown. Additionally, predictive biomarkers for immune checkpoint inhibitors (ICIs) should be fully elucidated because of their low response rate. Here, we analyzed the clinical utility of CGP and identified predictive biomarkers that respond to ICIs in R/M HNC. We evaluated over 1100 cases of HNC using the nationwide genetic clinical database established by the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) and 54 cases in an institution-based study. The C-CAT database revealed that 23% of the cases were candidates for clinical trials, and 5% received biomarker-matched therapy, including NTRK fusion. Our institution-based study showed that 9% of SCC cases and 25% of salivary gland cancer cases received targeted agents. In SCC cases, the tumor mutational burden (TMB) high (≥10 Mut/Mb) group showed long-term survival (>2 years) in response to ICI therapy, whereas the PD-L1 combined positive score showed no significant difference in progression-free survival. In multivariate analysis, CCND1 amplification was associated with a lower response to ICIs. Our results indicate that CGP may be useful in identifying prognostic biomarkers for immunotherapy in patients with HNC
    corecore