38 research outputs found

    Coat Protein Gene based Characterization of Cucumber Mosaic Virus Isolates Infecting Banana in India

    Get PDF
    Banana plants showing typical yellow stripes on leaves as symptoms, in addition to leaf distortion and stunting of plant were collected from Karnataka (KAR), Maharashtra (MH) and Uttar Pradesh (UP) in India. The causal agent was identified as Cucumber mosaic virus (CMV) on the basis of transmission electron microscopy and reverse transcription polymerase chain reaction (RT-PCR). Complete coat protein (CP) gene of all isolates were amplified using gene specific primers for coat protein (CP), followed by cloning into desired cloning vector for sequencing. Sequenced region were found containing complete single open reading frame of 657 nucleotides, potentially coding 219 amino acids. Sequence analysis of CP gene showed 93%-98% (at nucleotide) and 94%-99% (at amino acid) sequence identity between all three Indian isolates. On comparing CP gene sequences of CMV KAR, CMV MH and CMV UP with CMV P isolate (Physalis minima); we got 94%, 99% and 96% identity respectively. High degree identity at nucleotide level between these isolates of banana and Physalis minima (a weed) suggest that Physalis minima could be an alternate host of CMV banana. Phylogenetic analysis of nucleotide along with amino acid sequence of coat protein gene revealed that all our isolates belong to IB subgroup.  In short, it appears that there occurs a high incidence of CMV infecting banana belonging to IB subgroup in most parts of Indian subcontinent.Key words: Banana, CMV, CP gene, RT-PC

    Molecular Insights Into the Relationship Between Autoimmune Thyroid Diseases and Breast Cancer: A Critical Perspective on Autoimmunity and ER Stress

    Get PDF
    The etiopathologies behind autoimmune thyroid diseases (AITDs) unravel misbehavior of immune components leading to the corruption of immune homeostasis where thyroid autoantigens turn foe to the self. In AITDs lymphocytic infiltration in the thyroid shows up a deranged immune system charging the follicular cells of the thyroid gland (thyrocytes) leading to the condition of either hyperthyroidism or hypothyroidism. The inflammation in AITDs consistently associate with ER function due to which disturbances in the ER protein homeostasis leads to unfolded protein response (UPR) that promotes pathogenesis of autoimmunity. The roles of ER stress in the instantaneous downregulation of MHC class I molecules on thyrocytes and the relevance of IFN γ in the pathogenesis of AITD has been well-documented. Thyroglobulin being the major target of autoantibodies in most of the AITDs is because of its unusual processing in the ER. Autoimmune disorders display a conglomeration of ER stress-induced UPR activated molecules. Several epidemiological data highlight the preponderance of AITDs in women as well as its concurrence with breast cancer. Both being an active glandular system displaying endocrine activity, thyroid as well as breast tissue show various commonalities in the expression pattern of heterogenous molecules that not only participate in the normal functioning but at the same time share the blame during disease establishment. Studies on the development and progression of breast carcinoma display a deranged and uncontrolled immune response, which is meticulously exploited during tumor metastasis. The molecular crosstalks between AITDs and breast tumor microenvironment rely on active participation of immune cells. The induction of ER stress by Tunicamycin advocates to provide a model for cancer therapy by intervening glycosylation. Therefore, this review attempts to showcase the molecules that are involved in feeding up the relationship between breast carcinoma and AITDs

    Outer Membrane Vesicles (OMVs) of Gram-negative Bacteria: A Perspective Update

    No full text
    Outer Membrane Vesicles (OMVs) of Gram-negative bacteria are spherical membrane-enclosed entities of endocytic origin. Reported in the consortia of different bacterial species, production of OMVs into extracellular milieu seems essential for their survival. Enriched with bioactive proteins, toxins, and virulence factors, OMVs play a critical role in the bacteria-bacteria and bacteria-host interactions. Emergence of OMVs as distinct cellular entities helps bacteria in adaptating to diverse niches, in competing with other bacteria to protect members of producer species and more importantly play a crucial role in host-pathogen interaction. Composition of OMV, their ability to modulate host immune response, along with coordinated secretion of bacterial effector proteins, endows them with the armory, which can withstand hostile environments. Study of the OMV production under natural and diverse stress conditions has broadened the horizons, and also opened new frontiers in delineating the molecular machinery involved in disease pathogenesis. Playing diverse biological and pathophysiological functions, OMVs hold a great promise in enabling resurgence of bacterial diseases, in concomitance with the steep decline in the efficiency of antibiotics. Having multifaceted role, their emergence as a causative agent for a series of infectious diseases increases the probability for their exploitation in the development of effective diagnostic tools and as vaccines against diverse pathogenic species of Gram-negative origin

    Dissecting Endoplasmic Reticulum Unfolded Protein Response (UPRER) in Managing Clandestine Modus Operandi of Alzheimer’s Disease

    No full text
    Alzheimer’s disease (AD), a neurodegenerative disorder, is most common cause of dementia witnessed among aged people. The pathophysiology of AD develops as a consequence of neurofibrillary tangle formation which consists of hyperphosphorylated microtubule associated tau protein and senile plaques of amyloid-β (Aβ) peptide in specific brain regions that result in synaptic loss and neuronal death. The feeble buffering capacity of endoplasmic reticulum (ER) proteostasis in AD is evident through alteration in unfolded protein response (UPR), where UPR markers express invariably in AD patient’s brain samples. Aging weakens UPRER causing neuropathology and memory loss in AD. This review highlights molecular signatures of UPRER and its key molecular alliance that are affected in aging leading to the development of intriguing neuropathologies in AD. We present a summary of recent studies reporting usage of small molecules as inhibitors or activators of UPRER sensors/effectors in AD that showcase avenues for therapeutic interventions

    Analysis for the presence of determinants involved in the transport of mercury across bacterial membrane from polluted water bodies of India

    Get PDF
    Abstract Mercury, which is ubiquitous and recalcitrant to biodegradation processes, threatens human health by escaping to the environment via various natural and anthropogenic activities. Non-biodegradability of mercury pollutants has necessitated the development and implementation of economic alternatives with promising potential to remove metals from the environment. Enhancement of microbial based remediation strategies through genetic engineering approaches provides one such alternative with a promising future. In this study, bacterial isolates inhabiting polluted sites were screened for tolerance to varying concentrations of mercuric chloride. Following identification, several Pseudomonas and Klebsiella species were found to exhibit the highest tolerance to both organic and inorganic mercury. Screened bacterial isolates were examined for their genetic make-up in terms of the presence of genes (merP and merT) involved in the transport of mercury across the membrane either alone or in combination to deal with the toxic mercury. Gene sequence analysis revealed that the merP gene showed 86–99% homology, while the merT gene showed >98% homology with previously reported sequences. By exploring the genes involved in imparting metal resistance to bacteria, this study will serve to highlight the credentials that are particularly advantageous for their practical application to remediation of mercury from the environment

    Biology, Pathophysiological Role, and Clinical Implications of Exosomes: A Critical Appraisal

    No full text
    Exosomes are membrane-enclosed entities of endocytic origin, which are generated during the fusion of multivesicular bodies (MVBs) and plasma membranes. Exosomes are released into the extracellular milieu or body fluids; this process was reported for mesenchymal, epithelial, endothelial, and different immune cells (B-cells and dendritic cells), and was reported to be correlated with normal physiological processes. The compositions and abundances of exosomes depend on their tissue origins and cell types. Exosomes range in size between 30 and 100 nm, and shuttle nucleic acids (DNA, messenger RNAs (mRNAs), microRNAs), proteins, and lipids between donor and target cells. Pathogenic microorganisms also secrete exosomes that modulate the host immune system and influence the fate of infections. Such immune-modulatory effect of exosomes can serve as a diagnostic biomarker of disease. On the other hand, the antigen-presenting and immune-stimulatory properties of exosomes enable them to trigger anti-tumor responses, and exosome release from cancerous cells suggests they contribute to the recruitment and reconstitution of components of tumor microenvironments. Furthermore, their modulation of physiological and pathological processes suggests they contribute to the developmental program, infections, and human diseases. Despite significant advances, our understanding of exosomes is far from complete, particularly regarding our understanding of the molecular mechanisms that subserve exosome formation, cargo packaging, and exosome release in different cellular backgrounds. The present study presents diverse biological aspects of exosomes, and highlights their diagnostic and therapeutic potentials

    Dactylorhiza hatagirea (D. Don) Soo: A Critically Endangered Perennial Orchid from the North-West Himalayas

    No full text
    Dactylorhiza hatagirea (Orchidaceae) is a perennial herb inhabiting sub-alpine to alpine regions, ranging at elevations between 2500 and 5000 m.a.s.l. With palmately lobed rhizome and lanceolate leaves having a sheathing leaf base, it bears pink flowers with purple-colored notches and a curved spur. It finds wide use in ayurveda, siddha, unani, and folk medicine in curing disorders of the circulatory, respiratory, nervous, digestive, skeletal, and reproductive systems, besides boosting the immune system to fight infectious diseases. Secondary metabolites such as dactylorhins A–E, dactyloses A–B, and others exhibit a wide spectrum of pharmacological activities (antioxidant, antimicrobial, antiseptic, anticancer, and immune enhancing activities). Its use as a dietary supplement was found to be beneficial in increasing testosterone levels, resulting in improved sexual desire and arousal. Incessant overexploitation of this medicinally important herb has resulted in the dwindling of its populations in the wild, which has resulted in its classification as a critically endangered plant species. Efforts involving mass reproduction through in vitro (through tissue culture) and in vivo (by vegetative propagation) means are currently being made to maintain the germplasm of this critically endangered orchid. Holding immense significance in clinical research and drug discovery, work on the genomic front (transcriptomics) has recently been carried out to discover the wealth of unexplored genetic information for this perennial herb. The present study is aimed at reviewing different aspects of the orchid to present collective (summarized) information on this medicinally important herb in the present, particularly its botany, ethnobotanical uses, phytochemistry, and pharmacognosy, along with the strategies that need to be adopted to prevent its overexploitation in natural habitats

    Entanglement of UPRER in Aging Driven Neurodegenerative Diseases

    No full text
    The endoplasmic reticulum (ER) is an indispensable cellular organelle that remains highly active in neuronal cells. The ER bears the load of maintaining protein homeostasis in the cellular network by managing the folding of incoming nascent peptides; however, the stress imposed by physiological/environmental factors can cause ER dysfunctions that lead to the activation of ER unfolded protein response (UPRER). Aging leads to deterioration of several cellular pathways and therefore weakening of the UPRER. The decline in functioning of the UPRER during aging results in accumulation of misfolded proteins that becomes intracellular inclusions in neuronal cells, resulting in toxicity manifested as neurodegenerative diseases. With ascension in cases of neurodegenerative diseases, understanding the enigma behind aging driven UPRER dysfunction may lead to possible treatments

    Molecular Perspective of Nanoparticle Mediated Therapeutic Targeting in Breast Cancer: An Odyssey of Endoplasmic Reticulum Unfolded Protein Response (UPRER) and Beyond

    No full text
    Breast cancer (BC) is the second most frequent cause of death among women. Representing a complex and heterogeneous type of cancer, its occurrence is attributed by both genetic (gene mutations, e.g., BRCA1, BRCA2) and non-genetic (race, ethnicity, etc.) risk factors. The effectiveness of available treatment regimens (small molecules, cytotoxic agents, and inhibitors) decreased due to their poor penetration across biological barriers, limited targeting, and rapid body clearance along with their effect on normal resident cells of bone marrow, gastrointestinal tract, and hair follicles. This significantly reduced their clinical outcomes, which led to an unprecedented increase in the number of cases worldwide. Nanomedicine, a nano-formulation of therapeutics, emerged as a versatile delivering module for employment in achieving the effective and target specific delivery of pharmaceutical payloads. Adoption of nanotechnological approaches in delivering therapeutic molecules to target cells ensures not only reduced immune response and toxicity, but increases the stability of therapeutic entities in the systemic circulation that averts their degradation and as such increased extravasations and accumulation via enhanced permeation and the retention (EPR) effect in target tissues. Additionally, nanoparticle (NP)-induced ER stress, which enhances apoptosis and autophagy, has been utilized as a combative strategy in the treatment of cancerous cells. As nanoparticles-based avenues have been capitalized to achieve better efficacy of the new genera of therapeutics with enhanced specificity and safety, the present study is aimed at providing the fundamentals of BC, nanotechnological modules (organic, inorganic, and hybrid) employed in delivering different therapeutic molecules, and mechanistic insights of nano-ER stress induced apoptosis and autophagy with a perspective of exploring this avenue for use in the nano-toxicological studies. Furthermore, the current scenario of USA FDA approved nano-formulations and the future perspective of nanotechnological based interventions to overcome the existing challenges are also discussed

    Study of Amiloride Binding to Human Serum Albumin: Insights from Thermodynamic, Spectroscopic, and Molecular Docking Investigations

    No full text
    This study was undertaken to investigate the interaction between the sodium channel blocker amiloride (AML) and human serum albumin (HSA). A combination of multi-spectroscopic techniques and computational methods were employed to identify the AML binding site on HSA and the forces responsible for the formation of the HSA–AML complex. Our findings revealed that AML specifically binds to Sudlow’s site II, located in subdomain IIIA of HSA, and that the complex formed is stabilized using van der Waals hydrogen-bonding and hydrophobic interactions. FRET analysis showed that the distance between AML and Trp214 was optimal for efficient quenching. UV-Vis spectroscopy and circular dichroism indicated minor changes in the structure of HSA after AML binding, and molecular dynamics simulations (MDS) conducted over 100 ns provided additional evidence of stable HSA–AML-complex formation. This study enhances understanding of the interaction between AML and HSA and the mechanism responsible
    corecore