26 research outputs found

    Cerebrovascular Autoregulation in Preterm Infants During and After Surgical Ligation of the Ductus Arteriosus, a Comparison Between Two Surgical Approaches

    No full text
    Objective: During ligation of the ductus arteriosus, cerebrovascular autoregulation (CAR) may deteriorate. It is unknown whether different surgical approaches affect changes in CAR differently. The objective of this study was to compare the potential change in CAR in preterm infants during and after ligation comparing two surgical approaches: sternotomy and posterolateral thoracotomy.Design: This was an observational cohort pilot study.Setting: Level III NICU.Patients: Preterm infants (GA < 32 weeks) requiring ductal ligation were eligible for inclusion.Interventions: Halfway the study period, our standard surgical approach changed from a posterolateral thoracotomy to sternotomy. We analyzed dynamic CAR, using an index of autoregulation (COx) correlating cerebral tissue oxygen saturation and invasive arterial blood pressure measurements, before, during, and after ligation, in relation to the two approaches.Measurements and Main Results: Of nine infants, four were approached by thoracotomy and five by sternotomy. Median GA was 26 (range: 24.9-27.9) weeks, median birth weight (BW) was 800 (640-960) grams, and median post-natal age (PNA) was 18 (15-30) days, without differences between groups. COx worsened significantly more during and after thoracotomy from baseline (Delta rho from baseline: during surgery: Delta + 0.32, at 4 h: Delta + 0.36, at 8 h: Delta + 0.32, at 12 h: Delta + 0.31) as compared with sternotomy patients (Delta rho from baseline: during surgery: Delta + 0.20, at 4 h: Delta + 0.05, at 8 h: Delta + 0.15, at 12 h: Delta + 0.11) (F = 6.50; p = 0.038).Conclusions: In preterm infants, CAR reduced significantly during and up to 12 h after ductal ligation in all infants, but more evident during and after posterolateral thoracotomy as compared with sternotomy. These results need to be confirmed in a larger population

    Low cerebral blood flow after cardiac arrest is not associated with anaerobic cerebral metabolism

    Get PDF
    Aim of the study Estimation of cerebral anaerobic metabolism in survivors and non-survivors after cardiac arrest. Methods We performed an observational study in twenty comatose patients after cardiac arrest and 19 healthy control subjects. We measured mean flow velocity in the middle cerebral artery (MFVMCA) by transcranial Doppler. Arterial and jugular blood samples were used for calculation of the jugular venous-to-arterial CO2/arterial to-jugular venous O2 content difference ratio. Results After cardiac arrest, MFVMCA increased from 26.0[18.6–40.4] cm/sec on admission to 63.9[48.3–73.1] cm/sec after 72 h (p 1 at all time points after cardiac arrest and did not change during admission, with no differences between survivors and non-survivors. Values in cardiac arrest patients were similar to those in normal subjects. Conclusions In this study, low CBF after cardiac arrest is not associated with anaerobic metabolism. Hypoperfusion appears to be the consequence of a decrease of neuronal functioning and metabolic needs. Alternatively, hypoperfusion may decrease cerebral metabolism. Subsequently, metabolism increases in survivors, consistent with resumption of neuronal activity, whereas in non-survivors lasting low metabolism reflects irreversible neuronal damage

    Dynamic Cerebral Autoregulation Reproducibility Is Affected by Physiological Variability

    Get PDF
    Contains fulltext : 206173.pdf (publisher's version ) (Open Access

    Near-infrared spectroscopy-derived dynamic cerebral autoregulation in experimental human endotoxemia: An exploratory study

    No full text
    Cerebral perfusion may be altered in sepsis patients. However, there are conflicting findings on cerebral autoregulation (CA) in healthy participants undergoing the experimental endotoxemia protocol, a proxy for systemic inflammation in sepsis. In the current study, a newly developed near-infrared spectroscopy (NIRS)-based CA index is investigated in an endotoxemia study population, together with an index of focal cerebral oxygenation. Methods: Continuous-wave NIRS data were obtained from 11 healthy participants receiving a continuous infusion of bacterial endotoxin for 3 h (ClinicalTrials.gov NCT02922673) under extensive physiological monitoring. Oxygenated-deoxygenated hemoglobin phase differences in the (very)low frequency (VLF/LF) bands and the Tissue Saturation Index (TSI) were calculated at baseline, during systemic inflammation, and at the end of the experiment 7 h after the initiation of endotoxin administration. Results: The median (inter-quartile range) LF phase difference was 16.2° (3.0-52.6°) at baseline and decreased to 3.9° (2.0-8.8°) at systemic inflammation (p = 0.03). The LF phase difference increased from systemic inflammation to 27.6° (12.7-67.5°) at the end of the experiment (p = 0.005). No significant changes in VLF phase difference were observed. The TSI (mean ± SD) increased from 63.7 ± 3.4% at baseline to 66.5 ± 2.8% during systemic inflammation (p = 0.03) and remained higher at the end of the experiment (67.1 ± 4.2%, p = 0.04). Further analysis did not reveal a major influence of changes in several covariates such as blood pressure, heart rate, PaCO(2), and temperature, although some degree of interaction could not be excluded. Discussion: A reversible decrease in NIRS-derived cerebral autoregulation phase difference was seen after endotoxin infusion, with a small, sustained increase in TSI. These findings suggest that endotoxin administration in healthy participants reversibly impairs CA, accompanied by sustained microvascular vasodilation

    Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury.

    No full text
    OBJECTIVES: We have sought to develop an automated methodology for the continuous updating of optimal cerebral perfusion pressure (CPPopt) for patients after severe traumatic head injury, using continuous monitoring of cerebrovascular pressure reactivity. We then validated the CPPopt algorithm by determining the association between outcome and the deviation of actual CPP from CPPopt. DESIGN: Retrospective analysis of prospectively collected data. SETTING: Neurosciences critical care unit of a university hospital. PATIENTS: A total of 327 traumatic head-injury patients admitted between 2003 and 2009 with continuous monitoring of arterial blood pressure and intracranial pressure. MEASUREMENTS AND MAIN RESULTS: Arterial blood pressure, intracranial pressure, and CPP were continuously recorded, and pressure reactivity index was calculated online. Outcome was assessed at 6 months. An automated curve fitting method was applied to determine CPP at the minimum value for pressure reactivity index (CPPopt). A time trend of CPPopt was created using a moving 4-hr window, updated every minute. Identification of CPPopt was, on average, feasible during 55% of the whole recording period. Patient outcome correlated with the continuously updated difference between median CPP and CPPopt (chi-square=45, p&lt;.001; outcome dichotomized into fatal and nonfatal). Mortality was associated with relative "hypoperfusion" (CPP&lt;CPPopt), severe disability with "hyperperfusion" (CPP&gt;CPPopt), and favorable outcome was associated with smaller deviations of CPP from the individualized CPPopt. While deviations from global target CPP values of 60 mm Hg and 70 mm Hg were also related to outcome, these relationships were less robust. CONCLUSIONS: Real-time CPPopt could be identified during the recording time of majority of the patients. Patients with a median CPP close to CPPopt were more likely to have a favorable outcome than those in whom median CPP was widely different from CPPopt. Deviations from individualized CPPopt were more predictive of outcome than deviations from a common target CPP. CPP management to optimize cerebrovascular pressure reactivity should be the subject of future clinical trial in severe traumatic head-injury patients

    Targeting Autoregulation-Guided Cerebral Perfusion Pressure after Traumatic Brain Injury (COGiTATE): A Feasibility Randomized Controlled Clinical Trial

    No full text
    Managing traumatic brain injury (TBI) patients with a cerebral perfusion pressure (CPP) near to the cerebral autoregulation (CA)-guided "optimal" CPP (CPPopt) value is associated with improved outcome and might be useful to individualize care, but has never been prospectively evaluated. This study evaluated the feasibility and safety of CA-guided CPP management in TBI patients requiring intracranial pressure monitoring and therapy (TBIicp patients). The CPPopt Guided Therapy: Assessment of Target Effectiveness (COGiTATE) parallel two-arm feasibility trial took place in four tertiary centers. TBIicp patients were randomized to either the Brain Trauma Foundation (BTF) guideline CPP target range (control group) or to the individualized CA-guided CPP targets (intervention group). CPP targets were guided by six times daily software-based alerts for up to 5 days. The primary feasibility end-point was the percentage of time with CPP concordant (±5 mm Hg) with the set CPP targets. The main secondary safety end-point was an increase in therapeutic intensity level (TIL) between the control and intervention group. Twenty-eight patients were randomized to the control and 32 patients to the intervention group. CPP in the intervention group was in the target range for 46.5% (interquartile range, 41.2-58) of the monitored time, significantly higher than the feasibility target specified in the published protocol (36%; p < 0.001). There were no significant differences between groups for TIL or for other safety end-points. Conclusively, targeting an individual and dynamic CA-guided CPP is feasible and safe in TBIicp patients. This encourages a prospective trial powered for clinical outcomes
    corecore