61 research outputs found

    Financial Incentive Increases CPAP Acceptance in Patients from Low Socioeconomic Background

    Get PDF
    OBJECTIVE: We explored whether financial incentives have a role in patients' decisions to accept (purchase) a continuous positive airway pressure (CPAP) device in a healthcare system that requires cost sharing. DESIGN: Longitudinal interventional study. PATIENTS: The group receiving financial incentive (n = 137, 50.8±10.6 years, apnea/hypopnea index (AHI) 38.7±19.9 events/hr) and the control group (n = 121, 50.9±10.3 years, AHI 39.9±22) underwent attendant titration and a two-week adaptation to CPAP. Patients in the control group had a co-payment of 330−660;thefinancialincentivegrouppaidasubsidizedpriceof330-660; the financial incentive group paid a subsidized price of 55. RESULTS: CPAP acceptance was 43% greater (p = 0.02) in the financial incentive group. CPAP acceptance among the low socioeconomic strata (n = 113) (adjusting for age, gender, BMI, tobacco smoking) was enhanced by financial incentive (OR, 95% CI) (3.43, 1.09-10.85), age (1.1, 1.03-1.17), AHI (>30 vs. <30) (4.87, 1.56-15.2), and by family/friends who had positive experience with CPAP (4.29, 1.05-17.51). Among average/high-income patients (n = 145) CPAP acceptance was affected by AHI (>30 vs. <30) (3.16, 1.14-8.75), living with a partner (8.82, 1.03-75.8) but not by the financial incentive. At one-year follow-up CPAP adherence was similar in the financial incentive and control groups, 35% and 39%, respectively (p = 0.82). Adherence rate was sensitive to education (+yr) (1.28, 1.06-1.55) and AHI (>30 vs. <30) (5.25, 1.34-18.5). CONCLUSIONS: Minimizing cost sharing reduces a barrier for CPAP acceptance among low socioeconomic status patients. Thus, financial incentive should be applied as a policy to encourage CPAP treatment, especially among low socioeconomic strata patients

    Abnormal Growth and Feeding Behavior in Upper Airway Obstruction in Rats

    No full text
    Pediatric obstructive sleep apnea (OSA) is a syndrome manifesting with snoring and increased respiratory effort due to increased upper airway resistance. In addition to cause the abnormal sleep, this syndrome has been shown to elicit either growth retardation or metabolic syndrome and obesity. Treating OSA by adenotonsillectomy is usually associated with increased risk for obesity, despite near complete restoration of breathing and sleep. However, the underlying mechanism linking upper airways obstruction (AO) to persistent change in food intake, metabolism, and growth remains unclear. Rodent models have examined the impact of intermittent hypoxia on metabolism. However, an additional defining feature of OSA that is not related to intermittent hypoxia is enhanced respiratory loading leading to increased respiratory effort and abnormal sleep. The focus of this mini review is on recent evidence indicating the persistent abnormalities in endocrine regulation of feeding and growth that are not fully restored by the chronic upper AO removal in rats. Here, we highlight important aspects related to abnormal regulation of metabolism that are not related to intermittent hypoxia per se, in an animal model that mimics many of the clinical features of pediatric OSA. Our evidence from the AO model indicates that obstruction removal may not be sufficient to prevent the post-removal tendency for abnormal growth

    Chronic upper airway obstruction induces abnormal sleep/wake dynamics in juvenile rats.

    Get PDF
    OBJECTIVES: Conventional scoring of sleep provides little information about the process of transitioning between vigilance-states. We used the state space technique to explore whether rats with chronic upper airway obstruction (UAO) have abnormal sleep/wake states, faster movements between states, or abnormal transitions between states. DESIGN: The tracheae of 22-day-old Sprague-Dawley rats were surgically narrowed to increase upper airway resistance with no evidence for frank obstructed apneas or hypopneas; 24-h electroencephalography of sleep/wake recordings of UAO and sham-control animals was analyzed using state space technique. This non-categorical approach allows quantitative and unbiased examination of vigilance-states and state transitions. Measurements were performed 2 weeks post-surgery at baseline and following administration of ritanserin (5-HT2 receptor antagonist) the next day to stimulate sleep. MEASUREMENTS AND RESULTS: UAO rats spent less time in deep (delta-rich) slow wave sleep (SWS) and near transition zones between states. State transitions from light SWS to wake and vice versa and microarousals were more frequent and rapid in UAO rats, indicating that obstructed animals have more regions where vigilance-states are unstable. Ritanserin consolidated sleep in both groups by decreasing the number of microarousals and trajectories between wake and light SWS, and increasing deep SWS in UAO. CONCLUSIONS: State space technique enables visualization of vigilance-state transitions and velocities that were not evident by traditional scoring methods. This analysis provides new quantitative assessment of abnormal vigilance-state dynamics in UAO in the absence of frank obstructed apneas or hypopneas

    Sleep-Wake Evaluation from Whole-Night Non-Contact Audio Recordings of Breathing Sounds

    No full text
    <div><p>Study Objectives</p><p>To develop and validate a novel non-contact system for whole-night sleep evaluation using breathing sounds analysis (BSA).</p><p>Design</p><p>Whole-night breathing sounds (using ambient microphone) and polysomnography (PSG) were simultaneously collected at a sleep laboratory (mean recording time 7.1 hours). A set of acoustic features quantifying breathing pattern were developed to distinguish between sleep and wake epochs (30 sec segments). Epochs (n = 59,108 design study and n = 68,560 validation study) were classified using AdaBoost classifier and validated epoch-by-epoch for sensitivity, specificity, positive and negative predictive values, accuracy, and Cohen's kappa. Sleep quality parameters were calculated based on the sleep/wake classifications and compared with PSG for validity.</p><p>Setting</p><p>University affiliated sleep-wake disorder center and biomedical signal processing laboratory.</p><p>Patients</p><p>One hundred and fifty patients (age 54.0±14.8 years, BMI 31.6±5.5 kg/m2, m/f 97/53) referred for PSG were prospectively and consecutively recruited. The system was trained (design study) on 80 subjects; validation study was blindly performed on the additional 70 subjects.</p><p>Measurements and Results</p><p>Epoch-by-epoch accuracy rate for the validation study was 83.3% with sensitivity of 92.2% (sleep as sleep), specificity of 56.6% (awake as awake), and Cohen's kappa of 0.508. Comparing sleep quality parameters of BSA and PSG demonstrate average error of sleep latency, total sleep time, wake after sleep onset, and sleep efficiency of 16.6 min, 35.8 min, and 29.6 min, and 8%, respectively.</p><p>Conclusions</p><p>This study provides evidence that sleep-wake activity and sleep quality parameters can be reliably estimated solely using breathing sound analysis. This study highlights the potential of this innovative approach to measure sleep in research and clinical circumstances.</p></div

    Criterion curve of the feature selection algorithm.

    No full text
    <p>The inner window is a zoom in at the maximal value. Thirty-four features were selected. The dashed-dotted line (red) represents the resubstitution (Res) method performances, and the solid line (blue) represents the 10-fold CV performances (CV).</p

    Block diagram of the proposed system.

    No full text
    <p>The system consists of three main stages: A) Preprocessing and signal enhancement. B) Feature extraction. C) Sleep/wake Estimation.</p
    • …
    corecore