17 research outputs found

    Education for a Future in Crisis: Developing a Humanities-Informed STEM Curriculum

    Full text link
    In the popular imagination, science and technology are often seen as fields of knowledge production critical to social progress and a cooperative future. This optimistic portrayal of technological advancement also features prominently in internal discourses amongst scientists, industry leaders, and STEM students alike. Yet, an overwhelming body of research, investigation, and first-person accounts highlight the varying ways modern science, technology, and engineering industries contribute to the degradation of our changing environments and exploit and harm global low-income and marginalized populations. By and large, siloed higher-education STEM curricula provide inadequate opportunities for undergraduate and graduate students to critically analyze the historical and epistemological foundations of scientific knowledge production and even fewer tools to engage with and respond to modern community-based cases. Here, we describe the development of a humanities- and social sciences-informed curriculum designed to address the theory, content, and skill-based needs of traditional STEM students considering technoscientific careers. In essence, this course is designed to foster behavior change, de-center dominant ways of knowing in the sciences, and bolster self-reflection and critical-thinking skills to equip the developing STEM workforce with a more nuanced and accurate understanding of the social, political, and economic role of science and technology. This curriculum has the potential to empower STEM-educated professionals to contribute to a more promising, inclusive future. Our framework foregrounds key insights from science and technology studies, Black and Native feminisms, queer theory, and disability studies, alongside real-world case studies using critical pedagogies.Comment: 25 pages, 1 figure, 4 table

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    Disentangling the neural correlates of agency, ownership and multisensory processing

    No full text
    The experience of the self as an embodied agent in the world is an essential aspect of human consciousness. This experience arises from the feeling of control over one's bodily actions, termed the Sense of Agency, and the feeling that the body belongs to the self, Body Ownership. Despite longstanding philosophical and scientific interest in the relationship between the body and brain, the neural systems involved in Body Ownership and Sense of Agency, and especially their interactions, are not yet understood. In this preregistered study using the Moving Rubber Hand Illusion inside an MR-scanner, we aimed to uncover the relationship between Body Ownership and Sense of Agency in the human brain. Importantly, by using both visuomotor and visuotactile stimulations and measuring online trial-by-trial fluctuations in the illusion magnitude, we were able to disentangle brain systems related to objective sensory stimulation and subjective judgments of the bodily-self. Our results indicate that at both the behavioral and neural levels, Body Ownership and Sense of Agency are strongly interrelated. Multisensory regions in the occipital and fronto-parietal regions encoded convergence of sensory stimulation conditions. The subjective judgments of the bodily-self were related to BOLD fluctuations in the Somatosensory cortex and in regions not activated by the sensory conditions, such as the insular cortex and precuneus. Our results highlight the convergence of multisensory processing in specific neural systems for both Body Ownership and Sense of Agency with partially dissociable regions for subjective judgments in regions of the Default Mode Network
    corecore