16 research outputs found

    Sorafenib induces variations of the DNA methylome in HA22T/VGH human hepatocellular carcinoma-derived cells

    Get PDF
    Abstract. Sorafenib is currently used to treat advanced and/or unresectable hepatocellular carcinoma (HCC), but the increase of the median survival was only 3 months. Moreover, sorafenib has severe side effects and patients develop resistance quickly. Epigenetic alterations such as DNA methylation play a decisive role in the development and progression of HCC. To our knowledge, there are no studies that analysed the global DNA methylation changes in HCC cells treated with sorafenib. Using MeDip-chip technologies, we found 1230 differentially methylated genes in HA22T/VGH cells treated with sorafenib compared to untreated cells. Gene ontology and pathway analysis allowed identifying several enriched signaling pathways involved in tumorigenesis and cancer progression. Among the genes differentially methylated we found genes related to apoptosis, angiogenesis and invasion, and genes belonging to pathways known to be deregulated in HCC such as RAF/MEK/ERK, JAK-STAT, PI3K/AKT/mTOR and NF-κB. Generally, we found that oncogenes tended to be hypermethylated and the tumor suppressor genes tended to be hypomethylated after sorafenib treatment. Finally, we validated MeDip-chip results for several genes found diffedifferentially methylated such as BIRC3, FOXO3, MAPK3, SMAD2 and TSC2, using both COBRA assay and direct bisulfite sequencing and we evaluated their mRNA expression. Our findings suggest that sorafenib could affect the methylation level of genes associated to cancer-related processes and pathways in HCC cells, some of which have been previously described to be directly targeted by sorafenib

    Stable expression of siRNA for urokinase gene in human hepatocellular carcinoma.

    No full text
    5Stable expression of siRNA for urokinase gene in human hepatocellular carcinoma. Effective gene expression silencing and proliferation and migration inhibition of HCC cells.During the years 2004-2005 we have been one of the first group to use the technology of stable expression of shRNA by plasmid vectors to effectively silence gene expression. We silenced uPA expression in HCC cells.nonenoneSALVI A; ARICI B; ALGHISI A; G. DE PETRO; BARLATI S.Salvi, Alessandro; Arici, Bruna; Alghisi, A; DE PETRO, Giuseppina; Barlati, Sergi

    Proteomic Identification of LASP-1 Down-regulation After RNAi Urokinase Silencing in Human Hepatocellular Carcinoma Cells12

    Get PDF
    In human hepatocellular carcinoma (HCC), the high expression of urokinase-type plasminogen activator (uPA) is an unfavorable prognostic factor and a therapeutic target. To identify the downstream effects of uPA silencing by RNA interference, we studied proteome modifications of uPA-inhibited SKHep1C3 cells, an HCC-derived cell line. The study with two-dimensional difference gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry showed Lim and SH3 protein 1 (LASP-1), cytokeratin 1 (CK-1), cytokeratin 10 (CK-10), and heterogeneous nuclear ribonucleoprotein H1 down-modulation after uPA inhibition. LASP-1, CK-1, and CK-10 are involved in cytoskeleton dynamics as heterogeneous nuclear ribonucleoprotein H1 takes part in the mRNA processing and stability. We first confirmed the proteomic data by Western blot and immunoflorescence and then explored the link between uPA and LASP-1. The ectopic expression of uPA and LASP-1 supported the proteomic results and showed that uPA up-regulation increased LASP-1 expression and that both were implicated in SKHep1C3 motility. siRNA LASP-1 inhibition showed that LASP-1 was involved in actin microfilaments organization of SKHep1C3 cells. The disruption of the actin microfilaments after LASP-1 depletion increased uPA secretion and SKHep1C3 motility. Our results would suggest the hypothesis that uPA and LASP-1 expression may be coordinated in HCC-derived cells. In summary, the proteomic identification of a set of uPA downstream proteins provides new insight into the function of uPA in HCC cells

    Open Access Effects of miR-193a and sorafenib on hepatocellular carcinoma cells

    No full text
    Background: Hepatocellular carcinoma (HCC) is a challenging malignancy of global importance, it is the third most common cause of cancer-related mortality worldwide. In the last years the multikinase inhibitor sorafenib has been used for advanced HCC, but some patients do not benefit from this therapy; thus, novel therapeutic options based on molecular approaches are urgently needed. microRNAs are short non coding RNAs involved in several physiological and pathological conditions including HCC and increasing evidence describes miRs as good tools for the molecular targeted therapies in HCC. The purpose of this study was to identify novel approaches to sensitize the HCC cells to sorafenib by microRNAs targeting urokinase-type plasminogen activator (uPA). Methods: The miR-193a was validated as negative regulator of urokinase-type plasminogen activator (uPA) in 2 HCC undifferentiated cell lines by transient transfection of miR and anti-miR molecules. The molecular interaction between miR-193a and uPA mRNA target was verified by luciferase reporter assay. The miR-193a expression level was evaluated by stem-loop real time PCR in tumoral tissues from 39 HCC patients. The HCC cells were co-treated with sorafenib and miR-193a and the effects on cellular proliferation, apoptosis were tested. The effect of sorafenib on c-met expression levels was assessed by western blotting. Results: The miR-193a has resulted a negative regulator of uPA in both the HCC cell lines tested. The miR-193
    corecore