5 research outputs found

    Role of gene therapy in fanconi anemia: A systematic and literature review with future directions

    Get PDF
    Gene therapy (GT) has been reported to improve bone marrow function in individuals with Fanconi anemia (FA); however, its clinical application is still in the initial stages. We conducted this systematic review, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, to assess the long-term safety and clinical outcomes of GT in FA patients. Electronic searches from PubMed, Web of Science, Cochrane Library, and Google Scholar were conducted and full texts of articles meeting our inclusion criteria were reviewed. Three clinical trials were included, with a total of nine patients and mean age of 10.7 ± 5.7 years. All patients had lentiviral-mediated GT. A 1-year follow-up showed stabilization in blood lineages, without any serious adverse effects from GT. A metaregression analysis could not be conducted, as very little long-term follow-up data of patients was observed, and the median survival rate could not be calculated. Thus, we can conclude that GT seems to be a safe procedure in FA; however, further research needs to be conducted on the longitudinal clinical effects of GT in FA, for a better insight into its potential to become a standard form of treatment

    A multicenter study of romiplostim for chemotherapy-induced thrombocytopenia in solid tumors and hematologic malignancies

    Get PDF
    Chemotherapy-induced thrombocytopenia (CIT) frequently complicates cancer treatment causing chemotherapy delays, dose reductions, and discontinuation. There is no FDA-approved agent available to manage CIT. This study retrospectively evaluated patients with CIT treated on institutional romiplostim treatment pathways at 4 U.S. centers. The primary outcome was achievement of a romiplostim response [median on-romiplostim platelet count (Plt) ≥75x109/L and ≥30x109/L above baseline]. Secondary outcomes included time to Plt≥100x109/L and rates of the following: Plt<100x109/L, Plt<75x109/L, Plt<50x109/L, thrombocytosis, chemotherapy dose reduction/treatment delay, platelet transfusion, bleeding, and thromboembolism. Multivariable regression was used to identify predictors of romiplostim non-response and compare weekly dosing with intracycle/intermittent dosing. 173 patients (153 solid tumor, 20 lymphoma or myeloma) were treated, with 170 (98%) receiving a median of 4 (range, 1-36) additional chemotherapy cycles on romiplostim. Romiplostim was effective in solid tumor patients: 71% of patients achieved a romiplostim response, 79% avoided chemotherapy dose reductions/treatment delays and 89% avoided platelet transfusions. Median per-patient Plt on romiplostim was significantly higher than baseline (116x109/L vs. 60x109/L, P<0.001). Bone marrow tumor invasion, prior pelvic irradiation, and prior temozolomide predicted romiplostim non-response. Bleeding rates were lower than historical CIT cohorts and thrombosis rates were not elevated. Weekly dosing was superior to intracycle dosing with higher response rates and less chemotherapy dose reductions/treatment delays (IRR 3.00, 95% CI 1.30-6.91, P=0.010) or bleeding (IRR 4.84, 95% CI 1.18-19.89, P=0.029). Blunted response (10% response rate) was seen in non-myeloid hematologic malignancy patients with bone marrow involvement. In conclusion, romiplostim was safe and effective for CIT in most solid tumor patients

    The Element of Surprise

    No full text
    corecore