4,922 research outputs found

    Joint density-functional theory for electronic structure of solvated systems

    Full text link
    We introduce a new form of density functional theory for the {\em ab initio} description of electronic systems in contact with a molecular liquid environment. This theory rigorously joins an electron density-functional for the electrons of a solute with a classical density-functional theory for the liquid into a single variational principle for the free energy of the combined system. A simple approximate functional predicts, without any fitting of parameters to solvation data, solvation energies as well as state-of-the-art quantum-chemical cavity approaches, which require such fitting.Comment: Fixed typos and minor updates to tex

    Validação de um método para detecção e quantificação de soja culticance tolerante a herbicidas imidazolinonas por PCR convencional e quantitativo.

    Get PDF
    bitstream/item/71972/1/ID-30956.pd

    Ab Initio Study of Screw Dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals

    Full text link
    We report the first ab initio density-functional study of screw dislocations cores in the bcc transition metals Mo and Ta. Our results suggest a new picture of bcc plasticity with symmetric and compact dislocation cores, contrary to the presently accepted picture based on continuum and interatomic potentials. Core energy scales in this new picture are in much better agreement with the Peierls energy barriers to dislocation motion suggested by experiments.Comment: 3 figures, 3 table

    Large Scale Electronic Structure Calculations with Multigrid Acceleration

    Full text link
    We have developed a set of techniques for performing large scale ab initio calculations using multigrid accelerations and a real-space grid as a basis. The multigrid methods permit efficient calculations on ill-conditioned systems with long length scales or high energy cutoffs. The technique has been applied to systems containing up to 100 atoms, including a highly elongated diamond cell, an isolated C60_{60} molecule, and a 32-atom cell of GaN with the Ga d-states in valence. The method is well suited for implementation on both vector and massively parallel architectures.Comment: 4 pages, 1 postscript figur

    Nitrogen Doped Graphene Generated by Microwave Plasma and Reduction Expansion Synthesis

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1166/nnl.2016.2055This work aimed to produce nitrogen doped graphene from Graphite Oxide (GO) by combining the Expansion Reduction Synthesis (RES) approach, which utilizes urea as doping/reducing agent, with the use of an Atmospheric Plasma torch (Plasma), which provides the high temperature reactor environment known to thermally exfoliate it. The use of this combined strategy (Plasma-RES) was tried in an attempt to increase the surface area of the products. The amount of nitrogen doping was controlled by varying the urea/GO mass ratios in the precursor powders. X-ray diffraction analysis, SEM, TEM, BET surface areas and conductivity measurements of the diverse products are presented. Nitrogen inclusion in the graphene samples was corroborated by the mass spectral signal of the evolved gases generated during thermal programmed oxidation experiments of the products and by EDX analysis. We found that the Plasma-RES method can successfully generate doped graphene in situ as the urea and GO precursors simultaneously decompose and reduce in the discharge zone. When using the same amount of urea in the precursor mixture, samples obtained by Plasma-RES have higher surface area than those generated by RES, however, they contain a smaller nitrogen content

    Fracture in Mode I using a Conserved Phase-Field Model

    Full text link
    We present a continuum phase-field model of crack propagation. It includes a phase-field that is proportional to the mass density and a displacement field that is governed by linear elastic theory. Generic macroscopic crack growth laws emerge naturally from this model. In contrast to classical continuum fracture mechanics simulations, our model avoids numerical front tracking. The added phase-field smoothes the sharp interface, enabling us to use equations of motion for the material (grounded in basic physical principles) rather than for the interface (which often are deduced from complicated theories or empirical observations). The interface dynamics thus emerges naturally. In this paper, we look at stationary solutions of the model, mode I fracture, and also discuss numerical issues. We find that the Griffith's threshold underestimates the critical value at which our system fractures due to long wavelength modes excited by the fracture process.Comment: 10 pages, 5 figures (eps). Added 2 figures and some text. Removed one section (and a figure). To be published in PR

    Ferromagnetic resonance in periodic particle arrays

    Full text link
    We report measurements of the ferromagnetic resonance (FMR) spectra of arrays of submicron size periodic particle arrays of permalloy produced by electron-beam lithography. In contrast to plane ferromagnetic films, the spectra of the arrays show a number of additional resonance peaks, whose position depends strongly on the orientation of the external magnetic field and the interparticle interaction. Time-dependent micromagnetic simulation of the ac response show that these peaks are associated with coupled exchange and dipolar spin wave modesComment: 4 pages, 4 figure

    Generator coordinate method calculations of one-nucleon removal reactions on 40^{40}Ca

    Get PDF
    An approach to the Generator Coordinate Method (GCM) using Skyrme-type effective forces and Woods-Saxon construction potential is applied to calculate the single-particle proton and neutron overlap functions in 40^{40}Ca. The relationship between the bound-state overlap functions and the one-body density matrix has been used. These overlap functions are applied to calculate the cross sections of one-nucleon removal reactions such as (e,epe,e'p), (γ,p\gamma,p) and (p,dp,d) on 40^{40}Ca on the same theoretical footing. A consistent description of data for the different reactions is achieved. The shapes of the experimental cross sections for transitions to the 3/2+3/2^{+} ground state and the first 1/2+1/2^{+} excited state of the residual nuclei are well reproduced by the overlap functions obtained within the GCM. An additional spectroscopic factor accounting for correlations not included in the overlap function must be applied to the calculated results to reproduce the size of the experimental cross sections.Comment: 16 pages, 6 figures, to be published in Phys. Rev.

    Two-nucleon emission in the longitudinal response

    Get PDF
    The contribution of the two-nucleon emission in the longitudinal response for inclusive electron scattering reactions is studied. The model adopted to perform the calculations is based upon Correlated Basis Function theory but it considers only first order terms in the correlation function. The proper normalization of the wave function is ensured by considering, in addition to the usually evaluated two-point diagrams, also the three-point diagrams. Results for the 12C nucleus in the quasi-elastic region are presented.Comment: 7 pages, 4 Postscript figure

    Micromagnetic simulations of interacting dipoles on a fcc lattice: Application to nanoparticle assemblies

    Full text link
    Micromagnetic simulations are used to examine the effects of cubic and axial anisotropy, magnetostatic interactions and temperature on M-H loops for a collection of magnetic dipoles on fcc and sc lattices. We employ a simple model of interacting dipoles that represent single-domain particles in an attempt to explain recent experimental data on ordered arrays of magnetoferritin nanoparticles that demonstrate the crucial role of interactions between particles in a fcc lattice. Significant agreement between the simulation and experimental results is achieved, and the impact of intra-particle degrees of freedom and surface effects on thermal fluctuations are investigated.Comment: 10 pages, 9 figure
    corecore