We introduce a new form of density functional theory for the {\em ab initio}
description of electronic systems in contact with a molecular liquid
environment. This theory rigorously joins an electron density-functional for
the electrons of a solute with a classical density-functional theory for the
liquid into a single variational principle for the free energy of the combined
system. A simple approximate functional predicts, without any fitting of
parameters to solvation data, solvation energies as well as state-of-the-art
quantum-chemical cavity approaches, which require such fitting.Comment: Fixed typos and minor updates to tex