8,476 research outputs found

    Self-dual formulations of d=3 gravity theories in the path-integral framework

    Full text link
    We study the connection, at the quantum level, between d=2+1 dimensional self-dual models with actions of growing (from first to fourth) order, governing the dynamics of helicity +2 (or -2) massive excitations. We obtain identities between generating functionals of the different models using the path-integral framework, this allowing to establish dual maps among relevant vacuum expectation values. We check consistency of these v.e.v.'s with the gauge invariance gained in each mapping.Comment: 26 pages. LaTeX. Minor changes. Published in Int. J Modern Phys. A; http://www.worldscinet.com/ijmp

    Critical point symmetries in boson-fermion systems. The case of shape transition in odd nuclei in a multi-orbit model

    Get PDF
    We investigate phase transitions in boson-fermion systems. We propose an analytically solvable model (E(5/12)) to describe odd nuclei at the critical point in the transition from the spherical to γ\gamma-unstable behaviour. In the model, a boson core described within the Bohr Hamiltonian interacts with an unpaired particle assumed to be moving in the three single particle orbitals j=1/2,3/2,5/2. Energy spectra and electromagnetic transitions at the critical point compare well with the results obtained within the Interacting Boson Fermion Model, with a boson-fermion Hamiltonian that describes the same physical situation.Comment: Phys. Rev. Lett. (in press

    Intrinsic structure of two-phonon states in the interacting boson model

    Get PDF
    A general study of excitations up to two-phonon states is carried out using the intrinsic-state formalism of the Interacting Boson Model (IBM). Spectra and transitions for the different dynamical symmetries are analyzed and the correspondence with states in the laboratory frame is established. The influence of multi-phonon states is discussed. The approach is useful in problems where the complexity of the IBM spectrum renders the analysis in the laboratory frame difficult.Comment: 22 pages, TeX (ReVTeX). 7 eps figures. Submitted to Nucl. Phys.

    Evidence of strong dynamic core excitation in 19^{19}C resonant break-up

    Get PDF
    The resonant break-up of 19^{19}C on protons measured at RIKEN [Phys. Lett. B 660, 320 (2008)] is analyzed in terms of a valence-core model for 19^{19}C including possible core excitations. The analysis of the angular distribution of a prominent peak appearing in the relative-energy spectrum could be well described with this model and is consistent with the previous assignment of 5/2+5/2^{+} for this state. Inclusion of core-excitation effects are found to be essential to give the correct magnitude of the cross section for this state. By contrast, the calculation assuming an inert 18^{18}C core is found to largely underestimate the data.Comment: 5 pages, 2 figures, to be submitte
    corecore