4 research outputs found

    Hypatia I: a multi-generational and multi-disciplinary crew of female analog astronauts dedicated to space research, scientific outreach, and promotion of female role models in space careers

    Get PDF
    The low representation of women (~33%) in Science, Technology, Engineering and Mathematics (STEM) careers is extremely concerning and cultivates male-dominant cultures across a variety of academic and professional disciplines. In Spain, only 39% of national projects are led by women, thus evidencing the so-called “leaking pipeline”, that is, the tendency of women and other underrepresented groups to eventually abandon STEM-related fields. This social disequilibrium is particularly strong in the international space sector, where women represent less than ~20% of the workforce. The Hypatia I mission —a multi-generational and multi-disciplinary crew of 9 female scientists— seeks to help address this problem. In April 2023, the Hypatia I crew will participate in a two-week Martian analog mission at the Mars Desert Research Station (Utah, United States) with the goal of (i) performing high-quality space-related research in a simulation environment, (ii) conducting outreach and science communication activities, and most importantly, (iii) promoting female role models in STEM-related fields and inspiring future generations of scientists, particularly young girls interested in space career

    Ensembles of PT-dipoles for sound propagation management

    No full text
    Among other possible designs, metamaterials constructed from ensembles of meta-dipoles emerged as a flexible platform to redirect wave fields. We present an acoustic PT-dipole constructed from two Helmholtz resonators with different losses for such acoustic metamaterials. We explore dipole ensembles in a two dimensional space to either concentrate the field in a predefined area or create a silent area. Numerical simulations agree with experimental results and confirm the sound directivity created by the PT-dipole ensembles.Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPostprint (published version

    PT-symmetric Helmholtz resonator dipoles for sound directivity

    Get PDF
    Parity-time ( PT )-symmetric or, more generally, non-Hermitian systems have opened a new area for unconventional management of waves, with significant applications, especially in optics. However, fewer proposals are found in acoustics, possibly due to the lack of a simple mechanism for coherent gain. In this paper, we propose a composite non-Hermitian system in acoustics consisting of assemblies of PT -symmetric Helmholtz resonator (HR) dipoles. Like meta-atoms are used as building elements in metamaterials, we propose PT -symmetric dipoles to design non-Hermitian systems intended to engineer complicated directivity fields. We theoretically analyze, numerically confirm, and experimentally show the symmetry breaking in a two-dimensional space of non-Hermitian dipoles consisting of a pair of Helmholtz resonators with different levels of gain and loss. In particular, we explore, as an application, a metastructure to concentrate the sound pressure inside the circular array formed by PT -symmetric dipoles. The proposed HR dipoles may be a convenient composite element for smart control of sound.Peer ReviewedPostprint (published version

    Sound directivity by PT-symmetric acoustic dipoles

    Get PDF
    The new physics of open-dissipative, non-Hermitian systems have become a fruitful playground to uncover novel physical phenomena, even in exotic or counterintuitive ways, especially in optics and, more recently, also in acoustics. In this work, we propose a non-Hermitian metasystem in acoustics for the control of the sound field in two dimensions. The building blocks, or meta-atoms composing the arrangements, are pairs of identical Helmholtz resonators with different gain or loss functions. Such Helmholtz resonator dipoles may be designed to hold asymmetric scattering, as was theoretically analyzed and experimentally confirmed. Furthermore, aiming to create a complicated directivity, we explored different ensembles of Helmholtz resonator dipoles and numerically demonstrated a sound concentration with various configurations. The proposed non-Hermitian parity-time- symmetric dipoles made of a pair of Helmholtz resonators may be a potential artificial element for the creation of complex sound fields.Peer ReviewedObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura::9.5 - Augmentar la investigació científica i millorar la capacitat tecnològica dels sectors industrials de tots els països, en particular els països en desenvolupament, entre d’altres maneres fomentant la innovació i augmentant substancialment, d’aquí al 2030, el nombre de persones que treballen en el camp de la investigació i el desenvolupa­ment per cada milió d’habitants, així com la despesa en investigació i desenvolupament dels sectors públic i privatObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPostprint (author's final draft
    corecore