6 research outputs found

    Identification of the novel G250R variant indicates a role for Thrombomodulin in modulating the risk for venous thromboembolism

    No full text
    Identification of the novel G250R variant indicates a role for Thrombomodulin in modulating the risk for venous thromboembolis

    Molecules Inducing Dental Stem Cells Differentiation and Bone Regeneration: State of the Art

    No full text
    Teeth include mesenchymal stem cells (MSCs), which are multipotent cells that promote tooth growth and repair. Dental tissues, specifically the dental pulp and the dental bud, constitute a relevant source of multipotent stem cells, known as dental-derived stem cells (d-DSCs): dental pulp stem cells (DPSCs) and dental bud stem cells (DBSCs). Cell treatment with bone-associated factors and stimulation with small molecule compounds are, among the available methods, the ones who show excellent advantages promoting stem cell differentiation and osteogenesis. Recently, attention has been paid to studies on natural and non-natural compounds. Many fruits, vegetables, and some drugs contain molecules that can enhance MSC osteogenic differentiation and therefore bone formation. The purpose of this review is to examine research work over the past 10 years that has investigated two different types of MSCs from dental tissues that are attractive targets for bone tissue engineering: DPSCs and DBSCs. The reconstruction of bone defects, in fact, is still a challenge and therefore more research is needed; the articles reviewed are meant to identify compounds useful to stimulate d-DSC proliferation and osteogenic differentiation. We only consider the results of the research which is encouraging, assuming that the mentioned compounds are of some importance for bone regeneration

    Comparison of the cytotoxicity of 3D-printed aligners using different post-curing procedures: an in vitro study

    No full text
    Three-dimensional (3D) printing technology represents a novel method for manufacturing aligners. The aim of the present study was to assess the in-vitro cytotoxicity of 3D-printed aligners using different post-polymerisation conditions

    Irisin Role in Chondrocyte 3D Culture Differentiation and Its Possible Applications

    No full text
    risin is a recently discovered cytokine, better known as an exercise-induced myokine, produced primarily in skeletal muscle tissue as a response to exercise. Although the skeleton was initially identified as the main target of Irisin, its action is also proving effective in many other tissues. Physical activity determines a series of beneficial effects on health, including the possibility of counteracting the damage that is caused by arthritis to the cartilage of people suffering from osteoarthritis. Nevertheless, up to now, the studies that have taken into consideration the possible involvement of Irisin on the well-being of cartilage tissue are particularly limited. In this study, we postulated that the protective effect of physical activity on cartilage tissue may depend on the paracrine action of Irisin secreted during exercise; therefore, we analyzed the effects of Irisin, in vitro, on chondrogenic differentiation. To achieve this goal, three-dimensional cultures of commercially available human articular chondrocytes (HACs) were treated with the molecule under study. Our results revealed new crosstalk mechanisms between muscle and cartilage tissue. Furthermore, the confirmation of Irisin ability to induce chondrogenic differentiation could favor the development of exercise-mimetic drugs, with application relevance for patients who cannot perform physical activity
    corecore