3 research outputs found

    Design of Multifaceted Antioxidants: Shifting towards Anti-Inflammatory and Antihyperlipidemic Activity

    No full text
    Oxidative stress and inflammation are two conditions that coexist in many multifactorial diseases such as atherosclerosis and neurodegeneration. Thus, the design of multifunctional compounds that can concurrently tackle two or more therapeutic targets is an appealing approach. In this study, the basic NSAID structure was fused with the antioxidant moieties 3,5-di-tert-butyl-4-hydroxybenzoic acid (BHB), its reduced alcohol 3,5-di-tert-butyl- 4-hydroxybenzyl alcohol (BHBA), or 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox), a hydrophilic analogue of α-tocopherol. Machine learning algorithms were utilized to validate the potential dual effect (anti-inflammatory and antioxidant) of the designed analogues. Derivatives 1–17 were synthesized by known esterification methods, with good to excellent yields, and were pharmacologically evaluated both in vitro and in vivo for their antioxidant and anti-inflammatory activity, whereas selected compounds were also tested in an in vivo hyperlipidemia protocol. Furthermore, the activity/binding affinity of the new compounds for lipoxygenase-3 (LOX-3) was studied not only in vitro but also via molecular docking simulations. Experimental results demonstrated that the antioxidant and anti-inflammatory activities of the new fused molecules were increased compared to the parent molecules, while molecular docking simulations validated the improved activity and revealed the binding mode of the most potent inhibitors. The purpose of their design was justified by providing a potentially safer and more efficient therapeutic approach for multifactorial diseases

    Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules

    No full text
    Morpholine is a heterocycle featured in numerous approved and experimental drugs as well as bioactive molecules. It is often employed in the field of medicinal chemistry for its advantageous physicochemical, biological, and metabolic properties, as well as its facile synthetic routes. The morpholine ring is a versatile and readily accessible synthetic building block, it is easily introduced as an amine reagent or can be built according to a variety of available synthetic methodologies. This versatile scaffold, appropriately substituted, possesses a wide range of biological activities. There are many examples of molecular targets of morpholine bioactive in which the significant contribution of the morpholine moiety has been demonstrated; it is an integral component of the pharmacophore for certain enzyme active-site inhibitors whereas it bestows selective affinity for a wide range of receptors. A large body of in vivo studies has demonstrated morpholine's potential to not only increase potency but also provide compounds with desirable drug-like properties and improved pharamacokinetics. In this review we describe the medicinal chemistry/pharmacological activity of morpholine derivatives on various therapeutically related molecular targets, attempting to highlight the importance of the morpholine ring in drug design and development as well as to justify its classification as a privileged structure

    A Bio-Guided Screening for Antioxidant, Anti-Inflammatory and Hypolipidemic Potential Supported by Non-Targeted Metabolomic Analysis of Crepis spp.

    No full text
    This study was designed to evaluate the chemical fingerprints and the antioxidant, anti-inflammatory and hypolipidemic activity of selected Crepis species collected in Greece, namely, C. commutata, C. dioscoridis, C. foetida, C. heldreichiana, C. incana, C. rubra, and Phitosia crocifolia (formerly known as Crepis crocifolia). For the phytochemical analyses, sample measurements were carried out by using nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography coupled with mass spectrometry (LC-MS). Τhe extracts were evaluated both in vitro (radical scavenging activity: DPPH assay and total phenolic content: Folin–Ciocalteu) and in vivo (paw edema reduction and hypolipidemic activity: experimental mouse protocols). Among the tested extracts, C. incana presented the highest gallic acid equivalents (GAE) (0.0834 mg/mL) and the highest antioxidant activity (IC50 = 0.07 mg/mL) in vitro, as well as the highest anti-inflammatory activity with 32% edema reduction in vivo. Moreover, in the hypolipidemic protocol, the same extract increased plasma total antioxidant capacity (TAC) by 48.7%, and decreased cholesterol (41.3%) as well as triglycerides (37.2%). According to fractionation of the extract and the phytochemical results, this biological effect may be associated with the rich phenolic composition; caffeoyl tartaric acid derivatives (cichoric and caftaric acid) are regarded as the most prominent bioactive specialized metabolites. The present study contributes to the knowledge regarding the phytochemical and pharmacological profile of Crepis spp
    corecore