39 research outputs found

    Factor XIII A-Subunit V34L Variant Affects Thrombus Cross-Linking in a Murine Model of Thrombosis

    Get PDF
    Objective-Factor XIII (FXIII) cross-links fibrin upon activation by thrombin. Activation involves cleavage at residue 37 by thrombin, releasing an activation peptide. A common polymorphism (valine to leucine variant at residue 34, V34L), located in the activation peptide, has been associated with increased activation rates and paradoxically a protective effect in cardiovascular disease. There is, currently, no data available on the effects of V34L from in vivo models of thrombosis. We examined the effect of FXIII V34L on clot formation and cross-linking in vivo. Approach and Results-We generated a panel of full-length recombinant human FXIII-A2 variants with amino acid substitutions in the activation peptide to investigate the effect of these variants on activation rate, and we used wild-type, V34L, and alanine to glycine variant at residue 33 variants to study the effects of varying FXIII activation rate on thrombus formation in a murine model of FeCl3 injury. FXIII activation assay showed that residues 29, 30, 33, and 34 play a critical role in thrombin interaction. Full-length recombinant human FXIII-A2 V34L has significant effects on clot formation, structure, and lysis in vitro, using turbidity assay. This variant influenced fibrin cross-linking but not size of the thrombus in vivo. Conclusions-Mutations in the activation peptide of full-length recombinant FXIII regulate activation rates by thrombin, and V34L influences in vivo thrombus formation by increased cross-linking of the clot

    Work-related physical and psychosocial risk factors for sick leave in patients with neck or upper extremity complaints

    Get PDF
    Objectives: To study work-related physical and psychosocial risk factors for sick leave among patients who have visited their general practitioner for neck or upper extremity complaints. Methods: Three hundred and forty two patients with neck or upper extremity complaints completed self-report questionnaires at baseline and after 3 months. Cox regression models were used to investigate the association between work-related risk factors and sick leave (i.e., lost days from work due to neck or upper extremity complaints in 3 months). Effect modification by sick leave at baseline, sex, worrying and musculoskeletal co-morbidity was evaluated by adding product terms to the regression models. Results: In the subgroup of patients who scored high on the pain copying scale "worrying" the hazard ratio of sick leave was 1.32 (95% CI 1.07-1.62) per 10% increase in heavy physical work. The subgroup of patients who were sitting for long periods of time had a reduced risk of sick leave as compared to patients who did not spend a lot of time sitting, again only in patients who scored high on the pain coping scale "worrying" (adjusted HR = 0.17, 95%-CI 0.04-0.72). Other work-related risk factors were not significantly related to sick leave. Conclusions: Heavy physical work increased the risk of sick leave and prolonged sitting reduced the risk of sick leave in a subgroup of patients who worried much about their pain. Additional large longitudinal studies of sufficiently large size among employees with neck or upper extremity complaints are needed to confirm our results. © Springer-Verlag 2007

    Effects of MASP-1 of the Complement System on Activation of Coagulation Factors and Plasma Clot Formation

    Get PDF
    BACKGROUND: Numerous interactions between the coagulation and complement systems have been shown. Recently, links between coagulation and mannan-binding lectin-associated serine protease-1 (MASP-1) of the complement lectin pathway have been proposed. Our aim was to investigate MASP-1 activation of factor XIII (FXIII), fibrinogen, prothrombin, and thrombin-activatable fibrinolysis inhibitor (TAFI) in plasma-based systems, and to analyse effects of MASP-1 on plasma clot formation, structure and lysis. METHODOLOGY/PRINCIPAL FINDINGS: We used a FXIII incorporation assay and specific assays to measure the activation products prothrombin fragment F1+2, fibrinopeptide A (FPA), and activated TAFI (TAFIa). Clot formation and lysis were assessed by turbidimetric assay. Clot structure was studied by scanning electron microscopy. MASP-1 activated FXIII and, contrary to thrombin, induced FXIII activity faster in the Val34 than the Leu34 variant. MASP-1-dependent generation of F1+2, FPA and TAFIa showed a dose-dependent response in normal citrated plasma (NCP), albeit MASP-1 was much less efficient than FXa or thrombin. MASP-1 activation of prothrombin and TAFI cleavage were confirmed in purified systems. No FPA generation was observed in prothrombin-depleted plasma. MASP-1 induced clot formation in NCP, affected clot structure, and prolonged clot lysis. CONCLUSIONS/SIGNIFICANCE: We show that MASP-1 interacts with plasma clot formation on different levels and influences fibrin structure. Although MASP-1-induced fibrin formation is thrombin-dependent, MASP-1 directly activates prothrombin, FXIII and TAFI. We suggest that MASP-1, in concerted action with other complement and coagulation proteins, may play a role in fibrin clot formation

    Factor XIII

    No full text
    Factor XIII (FXIII) is an unusual blood coagulation factor, circulating as a heterotetramer composed of two catalytic A-subunits and two noncatalytic B-subunits. It is a plasma transglutaminase (TG), mostly associated with fibrinogen, which is activated by thrombin in the presence of calcium in the final stages of the coagulation cascade. It acts by stabilizing the clot through the covalent cross-linking of polymerized fibrin chains and the incorporation of fibrinolysis inhibitors into the fibrin clot. Genetic polymorphisms in FXIII are asso- ciated with cardiovascular diseases (CVD), including coronary artery disease (CAD), stroke, and deep vein thrombosis (DVT). FXIII deficiency leads to severe bleeding, impaired wound healing, and recurrent miscarriages. In this chapter, we review the basic functions of FXIII and focus on the most recent findings highlighting the role of FXIII in cardiovascular disease, in particular an emerging link to thrombosis. We use the detailed recommended FXIII nomenclature published in 2006 by the Scientific and Standardization sub-Committee of the International Society on Thrombosis and Haemostasis

    Double diabetes: A distinct high‐risk group?

    Get PDF
    The term double diabetes (DD) has been used to refer to individuals with type 1 diabetes (T1D) who are overweight, have a family history of type 2 diabetes and/or clinical features of insulin resistance. Several pieces of evidence indicate that individuals who display features of DD are at higher risk of developing future diabetes complications, independently of average glucose control, measured as glycated haemoglobin (HbA1c) concentration. Given the increased prevalence of individuals with features of DD, pragmatic criteria are urgently required to identify and stratify this group, which will help with subsequent implementation of more effective personalized interventions. In this review, we discuss the potential criteria for the clinical identification of individuals with DD, highlighting the strengths and weaknesses of each definition. We also cover potential mechanisms of DD and how these contribute to increased risk of diabetes complications. Special emphasis is placed on the role of estimated glucose disposal rate (eGDR) in the diagnosis of DD, which can be easily incorporated into clinical practice and is predictive of adverse clinical outcome. In addition to the identification of individuals with DD, eGDR has potential utility in monitoring response to different interventions. T1D is a more heterogeneous condition than initially envisaged, and those with features of DD represent a subgroup at higher risk of complications. Pragmatic criteria for the diagnosis of individuals with DD will help with risk stratification, allowing a more personalized and targeted management strategy to improve outcome and quality of life in this population

    Ranking reactive glutamines in the fibrinogen αC region that are targeted by blood coagulant factor XIII.

    No full text
    Factor XIIIa (FXIIIa) introduces covalent γ-glutamyl-ε-lysyl crosslinks into the blood clot network. These crosslinks involve both the γ and α chains of fibrin. The C-terminal portion of the fibrin α chain extends into the αC region (210-610). Crosslinks within this region help generate a stiffer clot, which is more resistant to fibrinolysis. Fibrinogen αC (233-425) contains a binding site for FXIIIa and three glutamines Q237, Q328, and Q366 that each participate in physiological crosslinking reactions. Although these glutamines were previously identified, their reactivities toward FXIIIa have not been ranked. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry and nuclear magnetic resonance (NMR) methods were thus used to directly characterize these three glutamines and probe for sources of FXIIIa substrate specificity. Glycine ethyl ester (GEE) and ammonium chloride served as replacements for lysine. Mass spectrometry and 2D heteronuclear single quantum coherence NMR revealed that Q237 is rapidly crosslinked first by FXIIIa followed by Q366 and Q328. Both (15)NH4Cl and (15)N-GEE could be crosslinked to the three glutamines in αC (233-425) with a similar order of reactivity as observed with the MALDI-TOF mass spectrometry assay. NMR studies using the single αC mutants Q237N, Q328N, and Q366N demonstrated that no glutamine is dependent on another to react first in the series. Moreover, the remaining two glutamines of each mutant were both still reactive. Further characterization of Q237, Q328, and Q366 is important because they are located in a fibrinogen region susceptible to physiological truncations and mutation. The current results suggest that these glutamines play distinct roles in fibrin crosslinking and clot architecture

    Fibrinogen αC-subregions critically contribute blood clot fibre growth, mechanical stability, and resistance to fibrinolysis

    Get PDF
    Fibrinogen is essential for blood coagulation. The C-terminus of the fibrinogen α-chain (αC-region) is composed of an αC-domain and αC-connector. Two recombinant fibrinogen variants (α390 and α220) were produced to investigate the role of subregions in modulating clot stability and resistance to lysis. The α390 variant, truncated before the αC-domain, produced clots with a denser structure and thinner fibres. In contrast, the α220 variant, truncated at the start of the αC-connector, produced clots that were porous with short, stunted fibres and visible fibre ends. These clots were mechanically weak and susceptible to lysis. Our data demonstrate differential effects for the αC-subregions in fibrin polymerisation, clot mechanical strength, and fibrinolytic susceptibility. Furthermore, we demonstrate that the αC-subregions are key for promoting longitudinal fibre growth. Together, these findings highlight critical functions of the αC-subregions in relation to clot structure and stability, with future implications for development of novel therapeutics for thrombosis
    corecore