631 research outputs found

    Toward a New Distance to the Active Galaxy NGC 4258: II. Centripetal Accelerations and Investigation of Spiral Structure

    Full text link
    We report measurements of centripetal accelerations of maser spectral components of NGC 4258 for 51 epochs spanning 1994 to 2004. This is the second paper of a series, in which the goal is determination of a new geometric maser distance to NGC 4258 accurate to possibly ~3%. We measure accelerations using a formal analysis method that involves simultaneous decomposition of maser spectra for all epochs into multiple, Gaussian components. Components are coupled between epochs by linear drifts (accelerations) from their centroid velocities at a reference epoch. For high-velocity emission, accelerations lie in the range -0.7 to +0.7 km/s/yr indicating an origin within 13 degrees of the disk midline (the perpendicular to the line-of-sight to the black hole). Comparison of high-velocity emission projected positions in VLBI images, with those derived from acceleration data, provides evidence that masers trace real gas dynamics. High-velocity emission accelerations do not support a model of trailing shocks associated with spiral arms in the disk. However, we find strengthened evidence for spatial periodicity in high-velocity emission, of wavelength 0.75 mas. This supports suggestions of spiral structure due to density waves in the nuclear accretion disk of an active galaxy. Accelerations of low-velocity (systemic) emission lie in the range 7.7 to 8.9 km/s/yr, consistent with emission originating from a concavity where the thin, warped disk is tangent to the line-of-sight. A trend in accelerations of low-velocity emission as a function of Doppler velocity may be associated with disk geometry and orientation, or with the presence of spiral structure.Comment: Accepted to ApJ, 48 pages and 20 figure

    Simulation of Plasticity in Nanocrystalline Silicon

    Get PDF
    Molecular dynamics investigation of plasticity in a model nanocrystalline silicon system demonstrates that inelastic deformation localizes in intergranular regions. The carriers of plasticity in these regions are atomic environments that can be described as high-density liquid-like amorphous silicon. During fully developed flow, plasticity is confined to system-spanning intergranular zones of easy flow. As an active flow zone rotates out of the plane of maximum resolved shear stress during deformation to large strain, new zones of easy flow are formed. Compatibility of the microstructure is accommodated by processes such as grain rotation and formation of new grains. Nano-scale voids or cracks may form if there emerge stress concentrations that cannot be relaxed by a mechanism that simultaneously preserves microstructural compatibility

    Velocity Profiles in Slowly Sheared Bubble Rafts

    Full text link
    Measurements of average velocity profiles in a bubble raft subjected to slow, steady-shear demonstrate the coexistence between a flowing state and a jammed state similar to that observed for three-dimensional foams and emulsions [Coussot {\it et al,}, Phys. Rev. Lett. {\bf 88}, 218301 (2002)]. For sufficiently slow shear, the flow is generated by nonlinear topological rearrangements. We report on the connection between this short-time motion of the bubbles and the long-time averages. We find that velocity profiles for individual rearrangement events fluctuate, but a smooth, average velocity is reached after averaging over only a relatively few events.Comment: typos corrected, figures revised for clarit

    Dynamics of Viscoplastic Deformation in Amorphous Solids

    Full text link
    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these new state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition, and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations.Comment: 16 pages, 9 figure

    Asymmetry in the Spectrum of High-Velocity H2O Maser Emission Features in Active Galactic Nuclei

    Full text link
    We suggest a mechanism for the amplification of high-velocity water-vapor maser emission features from the central regions of active galactic nuclei. The model of an emitting accretion disk is considered. The high-velocity emission features originate in the right and left wings of the Keplerian disk. The hyperfine splitting of the signal levels leads to an asymmetry in the spectral profile of the water vapor maser line at a frequency of 22.235 GHz. We show that the gain profile asymmetry must lead to an enhanced brightness of the blueshifted high-velocity emission features compared to the redshifted ones. Such a situation is observed in the source UGC 3789.Comment: 11 pages 3 figure

    Micro-plasticity and intermittent dislocation activity in a simplified micro structural model

    Full text link
    Here we present a model to study the micro-plastic regime of a stress-strain curve. In this model an explicit dislocation population represents the mobile dislocation content and an internal shear-stress field represents a mean-field description of the immobile dislocation content. The mobile dislocations are constrained to a simple dipolar mat geometry and modelled via a dislocation dynamics algorithm, whilst the shear-stress field is chosen to be a sinusoidal function of distance along the mat direction. The latter, defined by a periodic length and a shear-stress amplitude, represents a pre-existing micro-structure. These model parameters, along with the mobile dislocation density, are found to admit a diversity of micro-plastic behaviour involving intermittent plasticity in the form of a scale-free avalanche phenomenon, with an exponent for the strain burst magnitude distribution similar to those seen in experiment and more complex dislocation dynamics simulations.Comment: 30 pages, 12 figures, to appear in "Modelling and Simulation in Materials Science and Engineering

    Strain Hardening of Polymer Glasses: Entanglements, Energetics, and Plasticity

    Full text link
    Simulations are used to examine the microscopic origins of strain hardening in polymer glasses. While stress-strain curves for a wide range of temperature can be fit to the functional form predicted by entropic network models, many other results are fundamentally inconsistent with the physical picture underlying these models. Stresses are too large to be entropic and have the wrong trend with temperature. The most dramatic hardening at large strains reflects increases in energy as chains are pulled taut between entanglements rather than a change in entropy. A weak entropic stress is only observed in shape recovery of deformed samples when heated above the glass transition. While short chains do not form an entangled network, they exhibit partial shape recovery, orientation, and strain hardening. Stresses for all chain lengths collapse when plotted against a microscopic measure of chain stretching rather than the macroscopic stretch. The thermal contribution to the stress is directly proportional to the rate of plasticity as measured by breaking and reforming of interchain bonds. These observations suggest that the correct microscopic theory of strain hardening should be based on glassy state physics rather than rubber elasticity.Comment: 15 pages, 12 figures: significant revision

    Shear-Induced Stress Relaxation in a Two-Dimensional Wet Foam

    Full text link
    We report on experimental measurements of the flow behavior of a wet, two-dimensional foam under conditions of slow, steady shear. The initial response of the foam is elastic. Above the yield strain, the foam begins to flow. The flow consists of irregular intervals of elastic stretch followed by sudden reductions of the stress, i.e. stress drops. We report on the distribution of the stress drops as a function of the applied shear rate. We also comment on our results in the context of various two-dimensional models of foams

    The Megamaser Cosmology Project: IV. A Direct Measurement of the Hubble Constant from UGC 3789

    Full text link
    In Papers I and II from the Megamaser Cosmology Project (MCP), we reported initial observations of water masers in an accretion disk of a supermassive black hole at the center of the galaxy UGC 3789, which gave an angular-diameter distance to the galaxy and an estimate of Ho with 16% uncertainty. We have since conducted more VLBI observations of the spatial-velocity structure of these water masers, as well as continued monitoring of its spectrum to better measure maser accelerations. These more extensive observations, combined with improved modeling of the masers in the accretion disk of the central supermassive black hole, confirm our previous results, but with signifcantly improved accuracy. We find Ho = 68.9 +/- 7.1 km/s/Mpc; this estimate of Ho is independent of other methods and is accurate to +/-10%, including sources of systematic error. This places UGC 3789 at a distance of 49.6 +/- 5.1 Mpc, with a central supermassive black hole of (1.16 +/- 0.12) x 10^7 Msun.Comment: to appear in Ap
    • …
    corecore